PARTIAL DATA INVERSE PROBLEM FOR HYPERBOLIC EQUATION WITH TIME-DEPENDENT DAMPING COEFFICIENT AND POTENTIAL

被引:0
作者
Liu, Boya [1 ]
Saksala, Teemu [1 ]
Yan, Lili [2 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
inverse problem; time-dependent coefficients; wave equation on manifold; Carleman estimate; uniqueness; partial data; CALDERON PROBLEM; WAVE-EQUATIONS; UNIQUENESS RESULT; DIRICHLET; STABILITY; OPERATORS; RECONSTRUCTION;
D O I
10.1137/23M1588676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem of determining a time-dependent damping coefficient and potential appearing in the wave equation in a compact Riemannian manifold of dimension three or higher. More specifically, we are concerned with the case of conformally transversally anisotropic manifolds, or in other words, compact Riemannian manifolds with boundary conformally embedded in a product of the Euclidean line and a transversal manifold. With an additional assumption of the attenuated geodesic ray transform being injective on the transversal manifold, we prove that the knowledge of a certain partial Cauchy data set determines the time-dependent damping coefficient and potential uniquely.
引用
收藏
页码:5678 / 5722
页数:45
相关论文
共 69 条
  • [1] Adams R. A., 2003, SOBOLEV SPACES, V140
  • [2] Ahlfors L.V., 1979, INT SERIES PURE APPL, V3rd
  • [3] ALEXAKIS S., J. Eur. Math. Soc. (JEMS)
  • [4] Lorentzian Calderon problem under curvature bounds
    Alexakis, Spyros
    Feizmohammadi, Ali
    Oksanen, Lauri
    [J]. INVENTIONES MATHEMATICAE, 2022, 229 (01) : 87 - 138
  • [5] A NON UNIQUENESS RESULT FOR OPERATORS OF PRINCIPAL TYPE
    ALINHAC, S
    BAOUENDI, MS
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (04) : 561 - 568
  • [6] ALINHAC S, 1983, ANN MATH, V117, P77
  • [7] Boundary regularity for the Ricci equation, geometric convergence, and Gel-fand's inverse boundary problem
    Anderson, M
    Katsuda, A
    Kurylev, Y
    Lassas, M
    Taylor, M
    [J]. INVENTIONES MATHEMATICAE, 2004, 158 (02) : 261 - 321
  • [8] A uniqueness result in an inverse hyperbolic problem with analyticity
    Anikonov, YE
    Cheng, J
    Yamamoto, M
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 : 533 - 543
  • [9] BABICH V., 1981, Zap. Nauchn. Sem. LOMI, V117, P5
  • [10] BABICH V., 1991, Springer Ser. Wave Phenom., V4