American Society of Retina Specialists Artificial Intelligence Task Force Report

被引:0
作者
Talcott, Katherine E. [1 ,2 ]
Baxter, Sally L. [3 ,4 ,5 ]
Chen, Dinah K. [6 ,7 ]
Korot, Edward [8 ,9 ]
Lee, Aaron [10 ]
Kim, Judy E. [11 ]
Modi, Yasha [6 ]
Moshfeghi, Darius M. [9 ]
Singh, Rishi P. [1 ,2 ,12 ]
机构
[1] Cleveland Clin Fdn, Cole Eye Inst, Ctr Ophthalm Bioinformat, Cleveland, OH USA
[2] Cleveland Clin, Lerner Coll Med, Cleveland, OH USA
[3] Univ Calif San Diego, Div Ophthalmol Informat & Data Sci, Viterbi Family Dept Ophthalmol, La Jolla, CA USA
[4] Univ Calif San Diego, Shiley Eye Inst, La Jolla, CA USA
[5] Univ Calif San Diego, Dept Med, Div Biomed Informat, La Jolla, CA USA
[6] NYU, NYU Grossman Sch Med, Dept Ophthalmol, New York, NY USA
[7] Genentech Roche, South San Francisco, CA USA
[8] Retina Specialists Michigan, Grand Rapids, MI USA
[9] Stanford Univ, Byers Eye Inst, Horngren Family Vitreoretinal Ctr, Dept Ophthalmol,Sch Med, Palo Alto, CA USA
[10] Univ Washington, Roger & Angie Karalis Johnson Retina Ctr, Sch Med, Dept Ophthalmol, Seattle, WA USA
[11] Med Coll Wisconsin, Dept Ophthalmol & Visual Sci, Milwaukee, WI USA
[12] Cleveland Clin Martin Hlth, 200 SE Hosp Ave,POB 9010, Stuart, FL 34995 USA
关键词
artificial intelligence; deep learning; optical coherence tomography; fundus photographs; diabetic retinopathy; bias; commercialization; data sources; education; retina; DIABETIC-RETINOPATHY; AUTOMATED DETECTION; DEEP; VALIDATION; IMAGES; CLASSIFICATION; OPHTHALMOLOGY; PREDICTION; ALGORITHM; DISEASES;
D O I
10.1177/24741264241247602
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Since the Artificial Intelligence Committee of the American Society of Retina Specialists developed the initial task force report in 2020, the artificial intelligence (AI) field has seen further adoption of US Food and Drug Administration-approved AI platforms and significant development of AI for various retinal conditions. With expansion of this technology comes further areas of challenges, including the data sources used in AI, the democracy of AI, commercialization, bias, and the need for provider education on the technology of AI. The overall focus of this committee report is to explore these recent issues as they relate to the continued development of AI and its integration into ophthalmology and retinal practice.
引用
收藏
页码:373 / 380
页数:8
相关论文
共 76 条
  • [1] A-AMI, AMIA 10x10 Virtual Courses
  • [2] Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
    Abramoff, Michael D.
    Lavin, Philip T.
    Birch, Michele
    Shah, Nilay
    Folk, James C.
    [J]. NPJ DIGITAL MEDICINE, 2018, 1
  • [3] Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning
    Abramoff, Michael David
    Lou, Yiyue
    Erginay, Ali
    Clarida, Warren
    Amelon, Ryan
    Folk, James C.
    Niemeijer, Meindert
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) : 5200 - 5206
  • [4] ACGME International, Clinical informatics
  • [5] AI-LAB, Home
  • [6] AIM-AHEAD, AIM-AHEAD
  • [7] American Academy of Ophthalmology, Artificial Intelligence
  • [8] American Academy of Ophthalmology, 2021, Medicare carrier underprices new AI screening code, breaking from peers
  • [9] American Academy of Ophthalmology, 2022-2023 basic and clinical science course complete set
  • [10] Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience
    Antaki, Fares
    Kahwati, Ghofril
    Sebag, Julia
    Coussa, Razek Georges
    Fanous, Anthony
    Duval, Renaud
    Sebag, Mikael
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)