Comparison between EEG and MEG of static and dynamic resting-state networks

被引:8
作者
Cho, SungJun [1 ]
van Es, Mats [1 ]
Woolrich, Mark [1 ]
Gohil, Chetan [1 ]
机构
[1] Univ Oxford, Oxford Ctr Human Brain Act, Wellcome Ctr Integrat Neuroimaging, Dept Psychiat, Oxford OX3 7JK, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
electroencephalography; hidden Markov Model; magnetoencephalography; neural dynamics; resting-state networks; FUNCTIONAL CONNECTIVITY;
D O I
10.1002/hbm.70018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The characterisation of resting-state networks (RSNs) using neuroimaging techniques has significantly contributed to our understanding of the organisation of brain activity. Prior work has demonstrated the electrophysiological basis of RSNs and their dynamic nature, revealing transient activations of brain networks with millisecond timescales. While previous research has confirmed the comparability of RSNs identified by electroencephalography (EEG) to those identified by magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), most studies have utilised static analysis techniques, ignoring the dynamic nature of brain activity. Often, these studies use high-density EEG systems, which limit their applicability in clinical settings. Addressing these gaps, our research studies RSNs using medium-density EEG systems (61 sensors), comparing both static and dynamic brain network features to those obtained from a high-density MEG system (306 sensors). We assess the qualitative and quantitative comparability of EEG-derived RSNs to those from MEG, including their ability to capture age-related effects, and explore the reproducibility of dynamic RSNs within and across the modalities. Our findings suggest that both MEG and EEG offer comparable static and dynamic network descriptions, albeit with MEG offering some increased sensitivity and reproducibility. Such RSNs and their comparability across the two modalities remained consistent qualitatively but not quantitatively when the data were reconstructed without subject-specific structural MRI images.
引用
收藏
页数:22
相关论文
共 55 条
[1]  
Ba J, 2014, ACS SYM SER
[2]   A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults [J].
Babayan, Anahit ;
Erbey, Miray ;
Kumral, Deniz ;
Reinelt, Janis D. ;
Reiter, Andrea M. F. ;
Roebbig, Josefin ;
Schaare, H. Lina ;
Uhlig, Marie ;
Anwander, Alfred ;
Bazin, Pierre-Louis ;
Horstmann, Annette ;
Lampe, Leonie ;
Nikulin, Vadim V. ;
Okon-Singer, Hadas ;
Preusser, Sven ;
Pampel, Andre ;
Rohr, Christiane S. ;
Sacher, Julia ;
Thoene-Otto, Angelika ;
Trapp, Sabrina ;
Nierhaus, Till ;
Altmann, Denise ;
Arelin, Katrin ;
Bloechl, Maria ;
Bongartz, Edith ;
Breig, Patric ;
Cesnaite, Elena ;
Chen, Sufang ;
Cozatl, Roberto ;
Czerwonatis, Saskia ;
Dambrauskaite, Gabriele ;
Dreyer, Maria ;
Enders, Jessica ;
Engelhardt, Melina ;
Fischer, Marie Michele ;
Forschack, Norman ;
Golchert, Johannes ;
Golz, Laura ;
Guran, C. Alexandrina ;
Hedrich, Susanna ;
Hentschel, Nicole ;
Hoffmann, Daria I. ;
Huntenburg, Julia M. ;
Jost, Rebecca ;
Kosatschek, Anna ;
Kunzendorf, Stella ;
Lammers, Hannah ;
Lauckner, Mark E. ;
Mahjoory, Keyvan ;
Kanaan, Ahmad S. .
SCIENTIFIC DATA, 2019, 6 (1)
[3]   Fast transient networks in spontaneous human brain activity [J].
Baker, Adam P. ;
Brookes, Matthew J. ;
Rezek, Iead A. ;
Smith, Stephen M. ;
Behrens, Timothy ;
Smith, Penny J. Probert ;
Woolrich, Mark .
ELIFE, 2014, 3
[4]   Electrophysiological measures of resting state functional connectivity and their relationship with working memory capacity in childhood [J].
Barnes, Jessica J. ;
Woolrich, Mark W. ;
Baker, Kate ;
Colclough, Giles L. ;
Astle, Duncan E. .
DEVELOPMENTAL SCIENCE, 2016, 19 (01) :19-31
[5]   Transient spectral events in resting state MEG predict individual task responses [J].
Becker, R. ;
Vidaurre, D. ;
Quinn, A. J. ;
Abeysuriya, R. G. ;
Jones, O. Parker ;
Jbabdi, S. ;
Woolrich, M. W. .
NEUROIMAGE, 2020, 215
[6]  
Bishop C. M., 2006, Pattern Recognition and Machine Learning
[7]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[8]   Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging [J].
Brookes, Matthew J. ;
Leggett, James ;
Rea, Molly ;
Hill, Ryan M. ;
Holmes, Niall ;
Boto, Elena ;
Bowtell, Richard .
TRENDS IN NEUROSCIENCES, 2022, 45 (08) :621-634
[9]   Investigating the electrophysiological basis of resting state networks using magnetoencephalography [J].
Brookes, Matthew J. ;
Woolrich, Mark ;
Luckhoo, Henry ;
Price, Darren ;
Hale, Joanne R. ;
Stephenson, Mary C. ;
Barnes, Gareth R. ;
Smith, Stephen M. ;
Morris, Peter G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (40) :16783-16788
[10]   Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space [J].
Cichy, Radoslaw Martin ;
Pantazis, Dimitrios .
NEUROIMAGE, 2017, 158 :441-454