A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health

被引:3
|
作者
Zhao, Shang-Yu [1 ]
Ou, Kai [1 ]
Gu, Xing-Xing [2 ]
Dan, Zhi-Min [3 ]
Zhang, Jiu-Jun [4 ]
Wang, Ya-Xiong [1 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
[2] Chongqing Technol & Business Univ, Coll Environm & Resources, Chongqing Key Lab Catalysis & New Environm Mat, Chongqing 400067, Peoples R China
[3] Contemporary Amperex Technol Co Ltd CATL, Ningde 352100, Peoples R China
[4] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
State-of-charge (SOC); State-of-health (SOH); Global correction; Temperature; Aging migration; Transformer; Multiscale attention; CO-ESTIMATION;
D O I
10.1007/s12598-024-02942-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The state-of-charge (SOC) and state-of-health (SOH) of lithium-ion batteries affect their operating performance and safety. The coupled SOC and SOH are difficult to estimate adaptively in multi-temperatures and aging. This paper proposes a novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health. The battery model is formulated across temperatures and aging, which provides accurate feedback for unscented Kalman filter-based SOC estimation and aging information. The open-circuit voltages (OCVs) are corrected globally by the temporal convolutional network with accurate OCVs in time-sliding windows. Arrhenius equation is combined with estimated SOH for temperature-aging migration. A novel transformer model is introduced, which integrates multiscale attention with the transformer's encoder to incorporate SOC-voltage differential derived from battery model. This model simultaneously extracts local aging information from various sequences and aging channels using a self-attention and depth-separate convolution. By leveraging multi-head attention, the model establishes information dependency relationships across different aging levels, enabling rapid and precise SOH estimation. Specifically, the root mean square error for SOC and SOH under conditions of 15 degrees C dynamic stress test and 25 degrees C constant current cycling was less than 0.9% and 0.8%, respectively. Notably, the proposed method exhibits excellent adaptability to varying temperature and aging conditions, accurately estimating SOC and SOH.
引用
收藏
页码:5637 / 5651
页数:15
相关论文
共 50 条
  • [31] State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model
    Wang, Baojin
    Liu, Zhiyuan
    Li, Shengbo Eben
    Moura, Scott Jason
    Peng, Huei
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (01) : 3 - 11
  • [32] An Online Estimation Algorithm of State-of-Charge of Lithium-ion Batteries
    Feng, Yong
    Meng, Cheng
    Han, Fengling
    Yi, Xun
    Yu, Xinghuo
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 3879 - 3882
  • [33] Online State-of-Charge Estimation for Lithium-ion Batteries Based on the ARX Model
    Nie W.
    Tan W.
    Qiu G.
    Li C.
    Nie X.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2018, 38 (18): : 5415 - 5424
  • [34] Joint Estimation of Ternary Lithium-ion Battery State of Charge and State of Power Based on Dual Polarization Model
    Tan, Yaqian
    Luo, Maji
    She, Liyang
    Cui, Xiangyu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (02): : 1128 - 1147
  • [35] Fuzzy Model for Estimation of the State-of-Charge of Lithium-Ion Batteries for Electric Vehicles
    胡晓松
    孙逢春
    程夕明
    JournalofBeijingInstituteofTechnology, 2010, 19 (04) : 416 - 421
  • [36] VLSI design and FPGA implementation of state-of-charge and state-of-health estimation for electric vehicle battery management systems
    Kim, Minjoon
    So, Jaehyuk
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [37] Estimation of State of Charge, Unknown Nonlinearities, and State of Health of a Lithium-Ion Battery Based on a Comprehensive Unobservable Model
    Gholizadeh, Mehdi
    Salmasi, Farzad R.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (03) : 1335 - 1344
  • [38] Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm
    Lipu, Molla S. Hossain
    Hannan, Mahammad A.
    Hussain, Aini
    Saad, Mohamad H.
    Ayob, Afida
    Uddin, Mohammad Nasir
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (04) : 4225 - 4234
  • [39] Noise-Immune Model Identification and State-of-Charge Estimation for Lithium-Ion Battery Using Bilinear Parameterization
    Wei, Zhongbao
    Dong, Guangzhong
    Zhang, Xinan
    Pou, Josep
    Quan, Zhongyi
    He, Hongwen
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (01) : 312 - 323
  • [40] Fuzzy Sliding Mode Observer with Grey Prediction for the Estimation of the State-of-Charge of a Lithium-Ion Battery
    Kim, Daehyun
    Goh, Taedong
    Park, Minjun
    Kim, Sang Woo
    ENERGIES, 2015, 8 (11) : 12409 - 12428