First-Principles Nonadiabatic Dynamics of Molecules at Metal Surfaces with Vibrationally Coupled Electron Transfer

被引:9
作者
Meng, Gang [1 ]
Gardner, James [2 ]
Hertl, Nils [2 ]
Dou, Wenjie [3 ]
Maurer, Reinhard J. [2 ,4 ]
Jiang, Bin [1 ,5 ]
机构
[1] Univ Sci & Technol China, Dept Chem Phys, Key Lab Precis & Intelligent Chem, Hefei, Anhui, Peoples R China
[2] Univ Warwick, Dept Chem, Coventry CV4 7AL, England
[3] Westlake Univ, Sch Sci, Dept Chem, Hangzhou 310024, Zhejiang, Peoples R China
[4] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY TRANSFER; NO SCATTERING; AU(111); EXCITATION; RELAXATION;
D O I
10.1103/PhysRevLett.133.036203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Accurate description of nonadiabatic dynamics of molecules at metal surfaces involving electron transfer has been a long-standing challenge for theory. Here, we tackle this problem by first constructing highdimensional neural network diabatic potentials including state crossings determined by constrained density functional theory, then applying mixed quantum-classical surface hopping simulations to evolve coupled electron-nuclear motion. Our approach accurately describes the nonadiabatic effects in CO scattering from Au(111) without empirical parameters and yields results agreeing well with experiments under various conditions for this benchmark system. We find that both adiabatic and nonadiabatic energy loss channels have important contributions to the vibrational relaxation of highly vibrationally excited CO(vi= 17), whereas relaxation of low vibrationally excited states of CO(vi = 2) is weak and dominated by nonadiabatic energy loss. The presented approach paves the way for accurate first-principles simulations of electron transfer mediated nonadiabatic dynamics at metal surfaces.
引用
收藏
页数:6
相关论文
共 67 条
[1]  
[Anonymous], About us
[2]  
aps, About us, DOI [10.1103/PhysRevLett.133.036203, DOI 10.1103/PHYSREVLETT.133.036203]
[3]   Role of Tensorial Electronic Friction in Energy Transfer at Metal Surfaces [J].
Askerka, Mikhail ;
Maurer, Reinhard J. ;
Batista, Victor S. ;
Tully, John C. .
PHYSICAL REVIEW LETTERS, 2016, 116 (21)
[4]   Controlling an Electron-Transfer Reaction at a Metal Surface by Manipulating Reactant Motion and Orientation [J].
Bartels, Nils ;
Krueger, Bastian C. ;
Auerbach, Daniel J. ;
Wodtke, Alec M. ;
Schaefer, Tim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (50) :13690-+
[5]   Observation of orientation-dependent electron transfer in molecule-surface collisions [J].
Bartels, Nils ;
Golibrzuch, Kai ;
Bartels, Christof ;
Chen, Li ;
Auerbach, Daniel J. ;
Wodtke, Alec M. ;
Schaefer, Tim .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (44) :17738-17743
[6]   Electronic Friction Dominates Hydrogen Hot-Atom Relaxation on Pd(100) [J].
Blanco-Rey, M. ;
Juaristi, J. I. ;
Diez Muino, R. ;
Busnengo, H. F. ;
Kroes, G. J. ;
Alducin, M. .
PHYSICAL REVIEW LETTERS, 2014, 112 (10)
[7]   Determining the Effect of Hot Electron Dissipation on Molecular Scattering Experiments at Metal Surfaces [J].
Box, Connor L. ;
Zhang, Yaolong ;
Yin, Rongrong ;
Jiang, Bin ;
Maurer, Reinhard J. .
JACS AU, 2021, 1 (02) :164-173
[8]   Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption [J].
Buenermann, Oliver ;
Jiang, Hongyan ;
Dorenkamp, Yvonne ;
Kandratsenka, Alexander ;
Janke, Svenja M. ;
Auerbach, Daniel J. ;
Wodtke, Alec M. .
SCIENCE, 2015, 350 (6266) :1346-1349
[9]   Multiquantum Vibrational Excitation of NO Scattered from Au(111): Quantitative Comparison of Benchmark Data to Ab Initio Theories of Nonadiabatic Molecule-Surface Interactions [J].
Cooper, Russell ;
Bartels, Christof ;
Kandratsenka, Alexander ;
Rahinov, Igor ;
Shenvi, Neil ;
Golibrzuch, Kai ;
Li, Zhisheng ;
Auerbach, Daniel J. ;
Tully, John C. ;
Wodtke, Alec M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (20) :4954-4958
[10]   Metal-Induced Fast Vibrational Energy Relaxation: Quantum Nuclear Effects Captured in Diabatic Independent Electron Surface Hopping (IESH-D) Method [J].
De, Priyam Kumar ;
Jain, Amber .
JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (18) :4166-4179