High frequency environmental DNA metabarcoding provides rapid and effective monitoring of fish community dynamics

被引:5
作者
Hallam, Jane [1 ,2 ,3 ]
Clare, Elizabeth L. [2 ,4 ]
Jones, John Iwan [2 ]
Day, Julia J. [1 ]
机构
[1] UCL, Ctr Biodivers & Environm Res, Dept Genet Evolut & Environm, Gower St, London WC1E 6BT, England
[2] Queen Mary Univ London, Sch Biol & Behav Sci, London, England
[3] Yale Univ, Yale Sch Environm, New Haven, CT USA
[4] York Univ, Dept Biol, Toronto, ON, Canada
来源
ENVIRONMENTAL DNA | 2023年 / 5卷 / 06期
基金
英国自然环境研究理事会;
关键词
biodiversity; eDNA metabarcoding; fish communities; freshwater; temporal biomonitoring; FRESH-WATER BIODIVERSITY; ANGUILLA-ANGUILLA; R PACKAGE; CONSERVATION; THAMES; QUANTIFICATION; EXTRAPOLATION; RAREFACTION; TEMPERATURE; RICHNESS;
D O I
10.1002/edn3.486
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Long-term monitoring is critical to measure the response of biodiversity patterns and processes to human-mediated environmental pressures. This is particularly pertinent in freshwaters, where recent estimates indicated a third of all fish species are threatened with extinction, making ongoing biomonitoring essential for conservation management. High frequency annual monitoring is critical for identifying temporal changes in fish community composition; however, traditional survey methods are typically less practical over such timeframes. While environmental (e)DNA measurement represents a potentially powerful tool for monitoring temporal community dynamics, studies are lacking. To address this deficit, we generated a high frequency time-series dataset of entire fish communities using eDNA metabarcoding, to directly assess the repeatability and sensitivity of this method for detecting annual population trends. We targeted two differing environments (freshwater vs. intertidal) within the Thames catchment, UK, where detailed historical records from traditional monitoring were available for comparison. To test how robust eDNA data is for inferring the known community, we applied a hierarchical, nested design encompassing short and longer-term variation in eDNA data. Our analyses showed that irrespective of environment, eDNA metabarcoding represented known seasonal shifts in fish communities, where increased relative read abundance of eDNA coincided with known migratory and spawning events, including those of the critically endangered native species Anguilla anguilla (European eel). eDNA species detections across a single year included over 75% of species recorded in a ca. 30-year historical dataset, highlighting the power of eDNA for species detection. Our findings provide greater insight into the utility of eDNA metabarcoding for recovering temporal trends in fish communities from dynamic freshwater systems and insight into the potential best sampling strategy for future eDNA surveys.
引用
收藏
页码:1623 / 1640
页数:18
相关论文
共 50 条
  • [21] Metabarcoding of soil environmental DNA replicates plant community variation but not specificity
    Barnes, Christopher James
    Nielsen, Ida Broman
    Aagaard, Anne
    Ejrnaes, Rasmus
    Hansen, Anders Johannes
    Froslev, Tobias Guldberg
    ENVIRONMENTAL DNA, 2022, 4 (04): : 732 - 746
  • [22] Comparison of fish communities using environmental DNA metabarcoding and capture methods in a freshwater lake: A new set of universal PCR primers
    Hu, Wenjing
    Su, Chaoqun
    Liu, Qigen
    Kong, Youjia
    Hua, Shaopeng
    Hu, Zhongjun
    FISHERIES RESEARCH, 2022, 253
  • [23] Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system
    Shaw, Jennifer L. A.
    Clarke, Laurence J.
    Wedderburn, Scotte D.
    Barnes, Thomas C.
    Weyrich, Laura S.
    Cooper, Alan
    BIOLOGICAL CONSERVATION, 2016, 197 : 131 - 138
  • [24] Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding
    Alam, Md Jobaidul
    Kim, Nack-Keun
    Andriyono, Sapto
    Choi, Hee-kyu
    Lee, Ji-Hyun
    Kim, Hyun-Woo
    PEERJ, 2020, 8
  • [25] Identification of suitable tributaries to compensate fish habitat loss in dammed rivers using environmental DNA metabarcoding
    Lin, Yuqing
    Feng, Tao
    Tang, Lei
    Zhang, Hui
    Zhang, Jianyun
    Chen, Qiuwen
    He, Shufeng
    Li, Ting
    HYDROBIOLOGIA, 2023, 850 (16) : 3551 - 3564
  • [26] Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species Richness
    McElroy, Mary E.
    Dressler, Terra L.
    Titcomb, Georgia C.
    Wilson, Emily A.
    Deiner, Kristy
    Dudley, Tom L.
    Eliason, Erika J.
    Evans, Nathan T.
    Gaines, Steven D.
    Lafferty, Kevin D.
    Lamberti, Gary A.
    Li, Yiyuan
    Lodge, David M.
    Love, Milton S.
    Mahon, Andrew R.
    Pfrender, Michael E.
    Renshaw, Mark A.
    Selkoe, Kimberly A.
    Jerde, Christopher L.
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2020, 8
  • [27] Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding
    Evans, Nathan T.
    Olds, Brett P.
    Renshaw, Mark A.
    Turner, Cameron R.
    Li, Yiyuan
    Jerde, Christopher L.
    Mahon, Andrew R.
    Pfrender, Michael E.
    Lamberti, Gary A.
    Lodge, David M.
    MOLECULAR ECOLOGY RESOURCES, 2016, 16 (01) : 29 - 41
  • [28] Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding
    Ahn, Hyojin
    Kume, Manabu
    Terashima, Yuki
    Ye, Feng
    Kameyama, Satoshi
    Miya, Masaki
    Yamashita, Yoh
    Kasai, Akihide
    PLOS ONE, 2020, 15 (10):
  • [29] Monitoring of multiple fish species by quantitative environmental DNA metabarcoding surveys over two summer seasons
    Wu, Luhan
    Osugi, Tomonori
    Inagawa, Takashi
    Okitsu, Jiro
    Sakamoto, Shogo
    Minamoto, Toshifumi
    MOLECULAR ECOLOGY RESOURCES, 2024, 24 (01)
  • [30] Fish community shifts along a strong fluvial environmental gradient revealed by eDNA metabarcoding
    Garcia-Machado, Erik
    Laporte, Martin
    Normandeau, Eric
    Hernandez, Cecilia
    Cote, Guillaume
    Paradis, Yves
    Mingelbier, Marc
    Bernatchez, Louis
    ENVIRONMENTAL DNA, 2022, 4 (01): : 117 - 134