Dynamic Simulation Framework of the Robot-Assisted Training Platform (RATP)

被引:2
作者
Prasad, Shamanth Shanmuga [1 ]
Kim, Youngwoo [1 ]
机构
[1] Korea Natl Univ Transportat, Dept Elect Engn, Human Ctr Robot Lab HCRL, Chungju 27469, South Korea
基金
新加坡国家研究基金会;
关键词
Legged locomotion; Training; Musculoskeletal system; Robot kinematics; Dynamics; Extremities; Genetic algorithms; Lagrangian functions; Motion planning; Assistive robots; gait recognition; trajectory optimization; motion planning; robot kinematics; robot dynamics; genetic algorithms; assistive robots; HUMAN LOCOMOTION; EXOSKELETON; GENERATION; OUTCOMES; WALKING; DESIGN; SYSTEM; MODEL; SUIT;
D O I
10.1109/ACCESS.2024.3418452
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an innovative approach that seamlessly integrates a Genetic Algorithm (GA)-based method for generating and optimizing gait patterns with inverse dynamics analysis within the realm of personalized robot-assisted rehabilitation/training. Unlike conventional methods reliant on experimental data, our proposed approach enables the estimation and prediction of essential biomechanical information, including joint loads (joint force and torque). It achieves this by harnessing data derived from a customized musculoskeletal model for each user. By incorporating Lagrangian dynamics into the same platform used for gait pattern generation, the obtained gait pattern serves as a direct reference value for joint torque in applications such as robotic rehabilitation/training using wearable exoskeleton robots. Even in medical scenarios where only gait patterns are available using biomechanical information, our method can effectively estimate these parameters. We validated our method using a motion capture (MoCap) dataset as ground truth. This comparison assessed how well our estimations of joint angles, torques, and ground reaction forces (GRFs) matched actual human movement data. The results demonstrated high similarity, with an average Pearson Correlation Coefficient (PCC) value of 0.986 for joint angles, 0.748 for joint torques, and 0.975 for GRFs.
引用
收藏
页码:111126 / 111141
页数:16
相关论文
共 52 条
[1]   Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients [J].
Banala, Sai K. ;
Agrawal, Suni K. ;
Scholz, John P. .
2007 IEEE 10TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, VOLS 1 AND 2, 2007, :401-+
[2]   A global bibliometric and visualized analysis of gait analysis and artificial intelligence research from 1992 to 2022 [J].
Bao, Tong ;
Gao, Jiasi ;
Wang, Jinyi ;
Chen, Yang ;
Xu, Feng ;
Qiao, Guanzhong ;
Li, Fei .
FRONTIERS IN ROBOTICS AND AI, 2023, 10
[3]   Rehabilitation of gait after stroke: a review towards a top-down approach [J].
Belda-Lois, Juan-Manuel ;
Mena-del Horno, Silvia ;
Bermejo-Bosch, Ignacio ;
Moreno, Juan C. ;
Pons, Jose L. ;
Farina, Dario ;
Iosa, Marco ;
Molinari, Marco ;
Tamburella, Federica ;
Ramos, Ander ;
Caria, Andrea ;
Solis-Escalante, Teodoro ;
Brunner, Clemens ;
Rea, Massimiliano .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2011, 8
[4]   Design of a Dynamic Simulator for a Biped Robot [J].
Bravo M, Diego A. ;
Rengifo Rodas, Carlos F. .
MODELLING AND SIMULATION IN ENGINEERING, 2021, 2021
[5]   Gait analysis in neurological populations: Progression in the use of wearables [J].
Celik, Y. ;
Stuart, S. ;
Woo, W. L. ;
Godfrey, A. .
MEDICAL ENGINEERING & PHYSICS, 2021, 87 :9-29
[6]   Dynamic Modeling of the Dissipative Contact and Friction Forces of a Passive Biped-Walking Robot [J].
Corral, Eduardo ;
Gomez Garcia, M. J. ;
Castejon, Cristina ;
Meneses, Jesus ;
Gismeros, Raul .
APPLIED SCIENCES-BASEL, 2020, 10 (07)
[7]   Gait Recognition Using Pose Estimation and Signal Processing [J].
de Lima, Victr Cezar ;
Schwartz, William Robson .
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS (CIARP 2019), 2019, 11896 :719-728
[8]   Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles [J].
del Carmen Sanchez-Villamanan, Maria ;
Gonzalez-Vargas, Jose ;
Torricelli, Diego ;
Moreno, Juan C. ;
Pons, Jose L. .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2019, 16 (1)
[9]   Walking with perturbations: a guide for biped humans and robots [J].
Duysens, Jacques ;
Forner-Cordero, Arturo .
BIOINSPIRATION & BIOMIMETICS, 2018, 13 (06)
[10]  
Forner-Cordero A., 2008, Wearable Robots: Biomechatronic Exoskeletons, P17, DOI [10.1002/9780470987667.ch2, DOI 10.1002/9780470987667.CH2]