Accelerated Atmospheric to Hydrological Spread of Drought in the Yangtze River Basin under Climate

被引:0
|
作者
Zhang, Chengyuan [1 ,2 ]
Han, Zhiming [3 ]
Wang, Shuo [1 ,2 ]
Wang, Jiankun [1 ,2 ]
Cui, Chenfeng [1 ,2 ]
Liu, Junrong [4 ]
机构
[1] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Xianyang 712100, Peoples R China
[2] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid Area, Minist Educ, Xianyang 712100, Peoples R China
[3] Northwest A&F Univ, Coll Nat Resources & Environm, Xianyang 712100, Peoples R China
[4] China Coal Aerial Survey & Remote Sensing Grp Co L, Xian 710100, Peoples R China
关键词
GRACE; drought propagation; meteorological drought; hydrological drought; water security; POTENTIAL EVAPOTRANSPIRATION; CHINA; DATASET; SEVERITY; SPEI;
D O I
10.3390/rs16163033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Persistent droughts pose a threat to agricultural production, and the changing environment worsens the risk of drought exposure. Understanding the propagation of drought in changing environments and assessing possible impact factors can help in the early detection of drought, guiding agricultural production practices. The current study cannot reflect the propagation status of drought to the total terrestrial hydrological drought, so this work creatively investigated the atmospheric to hydrological drought propagation time in the Yangtze River Basin under the dynamic and static perspectives based on the Standardized Precipitation Evapotranspiration Index and the Terrestrial Water Storage Anomalous Drought Index, fine-tuned the time scale to the seasonal scale, and explored the contributing capacity of the variable interactions. The results show that: (1) under the dynamic perspective, while the propagation time is decreasing in the annual scale, the spring season shows the opposite trend; and (2) large variability exists in the timing of drought propagation at spatial scales, with elevation playing the most important influential role, and bivariate interactions contributing stronger explanations compared to single variables. This study highlights the importance of considering the impact of variable interactions and contributes to our understanding of the response of secondary droughts to upper-level droughts, providing valuable insights into the propagation of droughts to total terrestrial hydrologic drought.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Quantitative analysis of agricultural drought propagation process in the Yangtze River Basin by using cross wavelet analysis and spatial autocorrelation
    Li, Ronghui
    Chen, Nengcheng
    Zhang, Xiang
    Zeng, Linglin
    Wang, Xiaoping
    Tang, Shengjun
    Li, Deren
    Niyogi, Dev
    AGRICULTURAL AND FOREST METEOROLOGY, 2020, 280
  • [42] Projecting meteorological, hydrological and agricultural droughts for the Yangtze River basin
    Sun, Fengyun
    Mejia, Alfonso
    Zeng, Peng
    Che, Yue
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 696
  • [43] Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China
    Wen, Shanshan
    Su, Buda
    Wang, Yanjun
    Zhai, Jianqing
    Sun, Hemin
    Chen, Ziyan
    Huang, Jinlong
    Wang, Anqian
    Jiang, Tong
    CLIMATIC CHANGE, 2020, 163 (03) : 1207 - 1226
  • [44] Propagation of Meteorological Drought to Agricultural and Hydrological Droughts in the Tropical Lancang-Mekong River Basin
    Feng, Ganlin
    Chen, Yaoliang
    Mansaray, Lamin R.
    Xu, Hongfeng
    Shi, Aoni
    Chen, Yanling
    REMOTE SENSING, 2023, 15 (24)
  • [45] Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China
    Wang, Fei
    Wang, Zongmin
    Yang, Haibo
    Di, Danyang
    Zhao, Yong
    Liang, Qiuhua
    Hussain, Zafar
    JOURNAL OF HYDROLOGY, 2020, 584
  • [46] Human activities impact the propagation from meteorological to hydrological drought in the Yellow River Basin, China
    Zhang, Qi
    Miao, Chiyuan
    Guo, Xiaoying
    Gou, Jiaojiao
    Su, Ting
    JOURNAL OF HYDROLOGY, 2023, 623
  • [47] Spatio-Temporal Evolution and Propagation of Meteoro-Hydrological Drought in Yalong River Basin
    Zhu, Kui
    Xu, Yang
    Lu, Fan
    Sun, Xueying
    Gao, Mingxing
    Han, Xuhang
    Li, Dongsheng
    Jiang, Ming
    WATER, 2023, 15 (06)
  • [48] Drought assessment of terrestrial ecosystems in the Yangtze River Basin, China
    Shi, Mengqi
    Yuan, Zhe
    Shi, Xiaoliang
    Li, Mingxin
    Chen, Fei
    Li, Yi
    JOURNAL OF CLEANER PRODUCTION, 2022, 362
  • [49] Characteristics of Propagation From Meteorological Drought to Hydrological Drought in the Pearl River Basin
    Zhou, Zhaoqiang
    Shi, Haiyun
    Fu, Qiang
    Ding, Yibo
    Li, Tianxiao
    Wang, Yao
    Liu, Suning
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (04)
  • [50] How Severe Was the 2022 Flash Drought in the Yangtze River Basin?
    Yang, Liyan
    Wei, Jia
    REMOTE SENSING, 2024, 16 (22)