Decentralized, Safe, Multiagent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning

被引:0
|
作者
Vinod, Abraham P. [1 ]
Safaoui, Sleiman [2 ]
Summers, Tyler H. [2 ]
Yoshikawa, Nobuyuki [3 ]
Di Cairano, Stefano [1 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] Univ Texas Dallas, Control Optimizat & Networks Lab CONLab, Richardson, TX 75080 USA
[3] Mitsubishi Electr Corp, Chiyoda Ku, Tokyo 1008310, Japan
关键词
Safety; Planning; Vectors; Uncertainty; Trajectory; Stochastic processes; Dynamics; Collision avoidance; constrained control under uncertainty; decentralized model predictive control (MPC); multiagent systems; reinforcement learning (RL); safe learning-based control; MODEL PREDICTIVE CONTROL;
D O I
10.1109/TCST.2024.3433229
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.
引用
收藏
页码:2492 / 2499
页数:8
相关论文
共 50 条
  • [31] Distributed Motion Planning for Safe Autonomous Vehicle Overtaking via Artificial Potential Field
    Xie, Songtao
    Hu, Junyan
    Bhowmick, Parijat
    Ding, Zhengtao
    Arvin, Farshad
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 21531 - 21547
  • [32] Motion Planning for 2-DOF Transformable Wheel Robots Using Reinforcement Learning
    Park, Inha
    Ryu, Sijun
    Won, Jeeho
    Yoon, Hyeungyu
    Kim, SangGyun
    Kim, Hwa Soo
    Seo, TaeWon
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (11): : 10193 - 10200
  • [33] Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning
    Liu, Huashan
    Ying, Fengkang
    Jiang, Rongxin
    Shan, Yinghao
    Shen, Bo
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (06) : 4377 - 4388
  • [34] Motion Planning for Mobile Robots-Focusing on Deep Reinforcement Learning: A Systematic Review
    Sun, Huihui
    Zhang, Weijie
    Yu, Runxiang
    Zhang, Yujie
    IEEE ACCESS, 2021, 9 : 69061 - 69081
  • [35] Game of Drones: Multi-UAV Pursuit-Evasion Game With Online Motion Planning by Deep Reinforcement Learning
    Zhang, Ruilong
    Zong, Qun
    Zhang, Xiuyun
    Dou, Liqian
    Tian, Bailing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7900 - 7909
  • [36] Finite-Sample Analysis for Decentralized Batch Multiagent Reinforcement Learning With Networked Agents
    Zhang, Kaiqing
    Yang, Zhuoran
    Liu, Han
    Zhang, Tong
    Basar, Tamer
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (12) : 5925 - 5940
  • [37] A Decentralized Communication Framework Based on Dual-Level Recurrence for Multiagent Reinforcement Learning
    Li, Xuesi
    Li, Jingchen
    Shi, Haobin
    Hwang, Kao-Shing
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (02) : 640 - 649
  • [38] Deep Reinforcement Learning With Multicritic TD3 for Decentralized Multirobot Path Planning
    Yin, Heqing
    Wang, Chang
    Yan, Chao
    Xiang, Xiaojia
    Cai, Boliang
    Wei, Changyun
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (04) : 1233 - 1247
  • [39] GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning With End-to-End Learning
    Riviere, Benjamin
    Honig, Wolfgang
    Yue, Yisong
    Chung, Soon-Jo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) : 4249 - 4256
  • [40] Safe Policies for Reinforcement Learning via Primal-Dual Methods
    Paternain, Santiago
    Calvo-Fullana, Miguel
    Chamon, Luiz F. O.
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (03) : 1321 - 1336