A 3D conducting scaffold with lithiophilic carbon nanoparticles for stable lithium metal battery anodes

被引:2
作者
Li, Zhicun [1 ,2 ]
Fan, Hailin [1 ,3 ]
Zhang, Zheng [2 ]
Wang, Liwei [2 ]
Cao, Xiaoju [1 ]
Gao, Wencao [1 ]
Liu, Yuwen [2 ]
Liu, Yanxia [1 ]
Huo, Feng [1 ,3 ,4 ]
机构
[1] Zhengzhou Inst Emerging Ind Technol, Henan Key Lab Energy Storage Mat & Proc, Zhengzhou 450003, Peoples R China
[2] Yanshan Univ, Coll Environm & Chem Engn, Qinhuangdao 066000, Peoples R China
[3] Henan Univ, Longzihu New Energy Lab, Zhengzhou 450000, Peoples R China
[4] Chinese Acad Sci, Beijing Key Lab Ion Liquids Clean Proc, State Key Lab Multiphase Complex Syst, CAS Key Lab Green Proc & Engn,Inst Proc Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Li metal anode; Li host; Carbon nanoparticles; Lithiophilic sites; Controllable Li deposition; NUCLEATION; DEPOSITION; NANOSHEETS; STABILITY; GROWTH;
D O I
10.1016/j.jpowsour.2024.235183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li metal anode with high capacity, negative potential and low density is regarded as the most promising anode material. Unfortunately, its commercialization is greatly limited by Li dendrites. Here, a 3D carbon paper scaffold with lithiophilic carbon nanoparticles is synthesized as a Li host via the carbonization of metal-organic framework and the doping of oxygen atom. Carbon nanoparticles effectively improve the specific surface area of carbon paper that can low the local current density and provide rich internal spaces for Li reservoir. In addition, the rich lithiophilic groups (such as ZnO, nitrogen atom and oxygen atom) can regulate a uniform Li+ flux and achieve a controllable Li deposition. Based on these structural advantages, uniform nucleation and growth of Li metal have been realized. Especially, the symmetric cell renders an outstanding cyclic stability for 750 h with an ultra-low polarization voltage of 14 mV at 1 mA/cm2. Additionally, the full cell partied with a LiFePO4 cathode displays an initial specific capacity of 138.1 mAh/g, and even maintains 97.7 % capacity retention after 120 cycles at 0.5C. Therefore, this strategy presents a universal approach to construct porous hosts with abundant lithiophilic sites for long-lifespan Li metal batteries.
引用
收藏
页数:7
相关论文
共 39 条
[11]   A polythiourea protective layer for stable lithium metal anodes [J].
He, Xiaoya ;
Liu, Zhu ;
Yang, Yulian ;
Wang, Zhiyong ;
Chen, Yuanmao ;
Zhang, Qicheng ;
Shi, Zhangqin ;
Tan, Yihong ;
Yue, Xinyang ;
Liang, Zheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (19) :10155-10163
[12]   3D-hosted lithium metal anodes [J].
He, Xin ;
Zhang, Kai ;
Zhu, Zhiqiang ;
Tong, Zhangfa ;
Liang, Xiao .
CHEMICAL SOCIETY REVIEWS, 2024, 53 (01) :9-24
[13]   Spatially uniform deposition of lithium metal in 3D Janus hosts [J].
Hong, Bo ;
Fan, Hailin ;
Cheng, Xin-Bing ;
Yan, Xiaolin ;
Hong, Shu ;
Dong, Qingyuan ;
Gao, Chunhui ;
Zhang, Zhian ;
Lai, Yanqing ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2019, 16 :259-266
[14]   1,3,2-Dioxathiolane 2,2-Dioxide as a Bifunctional Electrolyte Additive to Enhance the Stability of Lithium Metal Anodes [J].
Huang, Yi-Xin ;
Xie, Yu-Xiang ;
Sun, Miao-Lan ;
Chen, Hui ;
Dai, Peng ;
Liu, Shi-Shi ;
Ouyang, Chu-Ying ;
Liu, Cheng-Yong ;
Hu, Bo-Bing ;
Liao, Shang-Ju ;
Huang, Ling ;
Sun, Shi-Gang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (09) :3760-3768
[15]   A 3D conducting scaffold with in-situ grown lithiophilic Ni2P nanoarrays for high stability lithium metal anodes [J].
Jiang, Huai ;
Fan, Hailin ;
Han, Zexun ;
Hong, Bo ;
Wu, Feixiang ;
Zhang, Kai ;
Zhang, Zhian ;
Fang, Jing ;
Lai, Yanqing .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :301-309
[16]   3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries [J].
Jin, Chengbin ;
Sheng, Ouwei ;
Luo, Jianmin ;
Yuan, Huadong ;
Fang, Cong ;
Zhang, Wenkui ;
Huang, Hui ;
Gan, Yongping ;
Xia, Yang ;
Liang, Chu ;
Zhang, Jun ;
Tao, Xinyong .
NANO ENERGY, 2017, 37 :177-186
[17]   Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode [J].
Jung, Ji In ;
Park, Sunwoo ;
Ha, Son ;
Cho, Se Youn ;
Jin, Hyoung-Joon ;
Yun, Young Soo .
CARBON ENERGY, 2021, 3 (05) :784-794
[18]   A new approach to stabilize the electrochemical performance of Li metal batteries through the structure alteration of CNT scaffolds [J].
Kim, Junghwan ;
Choi, Junghyun ;
Kim, Patrick Joohyun .
CARBON, 2023, 203 :426-435
[19]   A 3D lithiophilic ZIF-8@RGO free-standing scaffold with dendrite-free behavior enabling high-performance Li metal batteries [J].
Liu, Qi ;
Wang, Rilei ;
Liu, Zhenfang ;
Wang, Xianshu ;
Han, Cuiping ;
Liu, Hongbo ;
Li, Baohua .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (24) :12910-12917
[20]   Surface engineering toward stable lithium metal anodes [J].
Lu, Gongxun ;
Nai, Jianwei ;
Luan, Deyan ;
Tao, Xinyong ;
Lou, Xiong Wen .
SCIENCE ADVANCES, 2023, 9 (14)