Metal-organic frameworks for photocatalytical carbon dioxide reduction reaction

被引:9
|
作者
Li, Tianyu [1 ]
Wang, Ping [1 ]
He, Miao [1 ]
Zhang, Tianbao [1 ]
Yang, Cheng [1 ]
Li, Zhenxing [1 ]
机构
[1] China Univ Petr, Coll New Energy & Mat, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks; Carbon dioxide reduction reaction; C-C coupling; C1; product; CO2; CONVERSION; PHOTOREDUCTION; DECOMPOSITION;
D O I
10.1016/j.ccr.2024.216179
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Excessive use of carbonaceous fuels causes significant CO2 2 emissions so that more environmental issues are occurring. Reduction of CO2 2 to Carbonaceous compounds using sunlight is a viable strategy to address this problem. Metal-organic frameworks (MOFs) can effectively increase the interaction between CO2 molecules and active sites thanks to its extensive specific surface area and adjustable pore configuration. Concurrently, the synergistic effect of transition metal and organic ligands in MOFs also regulate the electron transfer process and promote photoionization efficiency. These properties make MOFs materials get great applications to catalyze carbon dioxide reduction as photocatalyst. Moreover, the MOFs materials with adjustable components carry different metal ions and ligands to form diverse MOFs based photocatalyst, which provides more possibilities for the preparation of highly active catalysts. Currently, the primary products of MOFs based photocatalyst are CO, CH4 4 and other C1 1 products. In this perspective, we review the fundamental mechanisms of the photocatalytic CO2 2 reduction reaction and summarize the current research findings on MOFs based photocatalyst within the domain by classifying the reduction products. Finally, we present and prospect the outlook based on current research progress. The primary purpose of this paper is to discuss the relationship between the MOFs materials and product by summarizing the generation rate and selectivity for different products, and to offer the guiding role for the further advancement of catalysts with excellent catalytic activity for efficient C 2 + products.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Metal-Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide
    Kornienko, Nikolay
    Zhao, Yingbo
    Kiley, Christopher S.
    Zhu, Chenhui
    Kim, Dohyung
    Lin, Song
    Chang, Christopher J.
    Yaghi, Omar M.
    Yang, Peidong
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) : 14129 - 14135
  • [2] Metal-Organic Frameworks Derived Electrocatalysts for Oxygen and Carbon Dioxide Reduction Reaction
    Najam, Tayyaba
    Khan, Naseem Ahmad
    Shah, Syed Shoaib Ahmad
    Ahmad, Khalil
    Javed, Muhammad Sufyan
    Suleman, Suleman
    Bashir, Muhammad Sohail
    Hasnat, Mohammad A.
    Rahman, Mohammed M.
    CHEMICAL RECORD, 2022, 22 (07):
  • [3] Metal-Organic Frameworks for Efficient Electrochemical Reduction of Carbon Dioxide
    Mtukula, Austin Chipojola
    Zhang, Xiang-Da
    Hou, Shu-Zhen
    Huang, Jian-Mei
    Xu, Ming
    Gu, Zhi-Yuan
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2023, 26 (21)
  • [4] Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers
    Shao, Ping
    Yi, Luocai
    Chen, Shumei
    Zhou, Tianhua
    Zhang, Jian
    JOURNAL OF ENERGY CHEMISTRY, 2020, 40 : 156 - 170
  • [5] Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers
    Ping Shao
    Luocai Yi
    Shumei Chen
    Tianhua Zhou
    Jian Zhang
    Journal of Energy Chemistry , 2020, (01) : 156 - 170
  • [6] Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction
    Kidanemariam, Alemayehu
    Lee, Jiwon
    Park, Juhyun
    POLYMERS, 2019, 11 (12)
  • [7] Carbon dioxide capture in metal-organic frameworks
    Sumida, Kenji
    Herm, Zoey R.
    McDonald, Thomas
    Bloch, Eric D.
    Mason, Jaead
    Choi, Hye Jin
    Long, Jeffrey R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [8] Carbon dioxide capture in metal-organic frameworks
    McDonald, Thomas M.
    Herm, Zoey R.
    Bloch, Eric D.
    Sumida, Kenji
    Mason, Jarad A.
    Long, Jeffrey R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [9] Carbon Dioxide Capture in Metal-Organic Frameworks
    Sumida, Kenji
    Rogow, David L.
    Mason, Jarad A.
    McDonald, Thomas M.
    Bloch, Eric D.
    Herm, Zoey R.
    Bae, Tae-Hyun
    Long, Jeffrey R.
    CHEMICAL REVIEWS, 2012, 112 (02) : 724 - 781
  • [10] Carbon dioxide adsorption on metal-organic frameworks
    Vakiti, Raj K.
    Turner, Camille A.
    Cao, Yan
    Zhao, Hou-Yin
    Pan, Wei-Ping
    Yan, Bangbo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241