Energy forecast for a cogeneration system using dynamic factor models

被引:0
作者
Alonso, Andres M. [1 ,2 ]
Sipols, A. E. [3 ]
Santos-Martin, M. Teresa [4 ]
机构
[1] Carlos III Univ, Dept Stat, Getafe 28903, Spain
[2] Carlos III Univ, Inst Flores Lemus, Madrid 28903, Spain
[3] Rey Juan Carlos Univ, Dept Appl Math Mat Sci & Engn & Elect Technol, Madrid, Spain
[4] Univ Salamanca, Inst Fundamental Phys & Math, Dept Stat, Salamanca, Spain
关键词
Dynamic factor analysis; Cogeneration forecast; Clustering; Multivariate time series; TIME-SERIES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.cie.2024.110525
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cogeneration is used in different sectors of industry and it allows that two types of energy to be efficiently obtained from a single source. Accurate predictions are fundamental to optimize energy production, considering the variability that occurs in the daily market. This study adjusts and predicts cogeneration using real data from a Spanish energy technology center, using dynamic factor analysis methodology and incorporating covariates such as temperature and relative humidity. A comparative analysis is performed to evaluate the improvements achieved by implementing cluster-structured dynamic models versus other methods. Furthermore, a robust interpolation method has been implemented to handle missing data in both the main variable and the covariates.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Optimal Operation of Residential EVs using DNN and Clustering based Energy Forecast
    Nair, Arun Sukumaran
    Hossen, Tareq
    Campion, Mitch
    Ranganathan, Prakash
    2018 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2018,
  • [42] Building energy consumption forecast using multi-objective genetic programming
    Tahmassebi, Amirhessam
    Gandomi, Amir H.
    MEASUREMENT, 2018, 118 : 164 - 171
  • [43] On the aggregation of input data for energy system models
    Cardona-Vasquez, David
    DiTondo, Davide
    Wogrin, Sonja
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2022, 139 (08): : 673 - 681
  • [44] Traffic Forecast in Mobile Networks: Classification System using Machine Learning
    Clemente, Diogo
    Soares, Gabriela
    Fernandes, Daniel
    Cortesao, Rodrigo
    Sebastiao, Pedro
    Ferreira, Lucio S.
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,
  • [45] MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM
    Araujo Junior, Carlos Alberto
    da Silva, Liniker Fernandes
    da Silva, Marcio Lopes
    Leite, Helio Garcia
    Valdetaro, Erlon Barbosa
    Donato, Danilo Barros
    Oliveira Castro, Renato Vinicius
    CERNE, 2016, 22 (02) : 151 - 158
  • [46] Vaccine rate forecast for COVID-19 in Africa using hybrid forecasting models
    Dhamodharavadhani, S.
    Rathipriya, R.
    AFRICAN HEALTH SCIENCES, 2023, 23 (01) : 93 - 103
  • [47] USING THE MULTIREGRESSION DYNAMIC-MODEL TO FORECAST BRAND SALES IN A COMPETITIVE PRODUCT MARKET
    QUEEN, CM
    STATISTICIAN, 1994, 43 (01): : 87 - 98
  • [48] FIXED-EFFECTS DYNAMIC PANEL MODELS, A FACTOR ANALYTICAL METHOD
    Bai, Jushan
    ECONOMETRICA, 2013, 81 (01) : 285 - 314
  • [49] Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals
    Barigozzi, Matteo
    Hallin, Marc
    JOURNAL OF ECONOMETRICS, 2020, 216 (01) : 4 - 34
  • [50] Identification of dynamic latent factor models of skill formation with translog production
    Del Bono, Emilia
    Kinsler, Josh
    Pavan, Ronni
    JOURNAL OF APPLIED ECONOMETRICS, 2022, 37 (06) : 1256 - 1265