Hardy inequalities for antisymmetric functions

被引:0
作者
Gupta, Shubham [1 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
关键词
Hardy inequality; Antisymmetric functions; Sharp constant; Expansion of the square; SCHRODINGER-OPERATORS;
D O I
10.1016/j.na.2024.113619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Hardy inequalities for antisymmetric functions in three different settings: Euclidean space, torus and the integer lattice. In particular, we show that under the antisymmetric condition the sharp constant in Hardy inequality increases substantially and grows as d(4) as d -> infinity in all cases. As a side product, we prove Hardy inequality on a domain whose boundary forms a corner at the point of singularity x = 0.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives [J].
Nguyen Tuan Duy ;
Nguyen Lam ;
Le Long Phi .
Revista Matemática Complutense, 2022, 35 :1-23
[22]   Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives [J].
Nguyen Tuan Duy ;
Nguyen Lam ;
Le Long Phi .
REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (01) :1-23
[23]   Finsler Hardy inequalities [J].
Mercaldo, Anna ;
Sano, Megumi ;
Takahashi, Futoshi .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (12) :2370-2398
[24]   Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions [J].
Himmelreich, Kristina Krulic ;
Pecaric, Josip ;
Pokaz, Dora ;
Praljak, Marjan .
AXIOMS, 2023, 12 (05)
[25]   HARDY INEQUALITIES ON RIEMANNIAN MANIFOLDS WITH NEGATIVE CURVATURE [J].
Yang, Qiaohua ;
Su, Dan ;
Kong, Yinying .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)
[26]   Hardy type inequalities for the fractional relativistic operator [J].
Roncal, Luz .
MATHEMATICS IN ENGINEERING, 2022, 4 (03)
[27]   IMPROVED Lp-Lq HARDY INEQUALITIES [J].
Orazbayev, Almat ;
Suragan, Durvudkhan .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04) :981-990
[28]   INTEGRAL HARDY INEQUALITIES, THEIR GENERALIZATIONS AND RELATED INEQUALITIES [J].
Avkhadiev, F. G. .
UFA MATHEMATICAL JOURNAL, 2023, 15 (04) :3-20
[29]   Bessel pairs and optimal Hardy and Hardy–Rellich inequalities [J].
Nassif Ghoussoub ;
Amir Moradifam .
Mathematische Annalen, 2011, 349 :1-57
[30]   SOME HARDY-TYPE INTEGRAL INEQUALITIES WITH SHARP CONSTANT INVOLVING MONOTONE FUNCTIONS [J].
Sid-Ahmed, Bendaoud A. B. E. D. ;
Benaissa, Bouharket ;
Senouci, Abdelkader .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03) :759-768