Contrastive Self-Supervised Learning for Globally Distributed Landslide Detection

被引:6
|
作者
Ghorbanzadeh, Omid [1 ]
Shahabi, Hejar [2 ]
Piralilou, Sepideh Tavakkoli [3 ]
Crivellari, Alessandro [4 ]
La Rosa, Laura Elena Cue [5 ]
Atzberger, Clement [1 ]
Li, Jonathan [6 ,7 ]
Ghamisi, Pedram [8 ]
机构
[1] Univ Nat Resources & Life Sci BOKU, Inst Geomat, A-1190 Vienna, Austria
[2] INRS, Ctr Eau Terre Environm, Quebec City, PQ G1K 9A9, Canada
[3] IARAI, A-1030 Vienna, Austria
[4] Natl Taiwan Univ, Dept Geog, Taipei 106319, Taiwan
[5] Wageningen Univ & Res, Lab Geoinformat Sci & Remote Sensing, NL-6708 PB Wageningen, Netherlands
[6] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[7] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[8] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zent Dresden Rossendorf, Freiberg, Germany
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Terrain factors; Feature extraction; Data models; Codes; Decoding; Benchmark testing; Deep learning; Landslides; Detection algorithms; Remote sensing; Hazardous areas; landslide detection; multispectral imagery; natural hazard; remote sensing;
D O I
10.1109/ACCESS.2024.3449447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Remote Sensing (RS) field continuously grapples with the challenge of transforming satellite data into actionable information. This ongoing issue results in an ever-growing accumulation of unlabeled data, complicating interpretation efforts. The situation becomes even more challenging when satellite data must be used immediately to identify the effects of a natural hazard. Self-supervised learning (SSL) offers a promising approach for learning image representations without labeled data. Once trained, an SSL model can address various tasks with significantly reduced requirements for labeled data. Despite advancements in SSL models, particularly those using contrastive learning methods like MoCo, SimCLR, and SwAV, their potential remains largely unexplored in the context of instance segmentation and semantic segmentation of satellite imagery. This study integrates SwAV within an auto-encoder framework to detect landslides using deca-metric resolution multi-spectral images from the globally-distributed large-scale landslide4sense (L4S) 2022 benchmark dataset, employing only 1% and 10% of the labeled data. Our proposed SSL auto-encoder model features two modules: SwAV, which assigns features to prototype vectors to generate encoder codes, and ResNets, serving as the decoder for the downstream task. With just 1% of labeled data, our SSL model performs comparably to ten state-of-the-art deep learning segmentation models that utilize 100% of the labeled data in a fully supervised manner. With 10% of labeled data, our SSL model outperforms all ten fully supervised counterparts trained with 100% of the labeled data.
引用
收藏
页码:118453 / 118466
页数:14
相关论文
共 50 条
  • [1] Multicue Contrastive Self-Supervised Learning for Change Detection in Remote Sensing
    Yang, Meijuan
    Jiao, Licheng
    Liu, Fang
    Hou, Biao
    Yang, Shuyuan
    Zhang, Yake
    Wang, Jianlong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 14
  • [2] Contrastive Self-Supervised Learning-Based Background Reconstruction for Hyperspectral Anomaly Detection
    Sun, Xiaoming
    Zhang, Yuxiang
    Dong, Yanni
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [3] Contrastive Self-Supervised Learning With Smoothed Representation for Remote Sensing
    Jung, Heechul
    Oh, Yoonju
    Jeong, Seongho
    Lee, Chaehyeon
    Jeon, Taegyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [5] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233
  • [6] Contrastive self-supervised learning for diabetic retinopathy early detection
    Jihong Ouyang
    Dong Mao
    Zeqi Guo
    Siguang Liu
    Dong Xu
    Wenting Wang
    Medical & Biological Engineering & Computing, 2023, 61 : 2441 - 2452
  • [7] Contrastive self-supervised learning for diabetic retinopathy early detection
    Ouyang, Jihong
    Mao, Dong
    Guo, Zeqi
    Liu, Siguang
    Xu, Dong
    Wang, Wenting
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (09) : 2441 - 2452
  • [8] Self-Supervised Spectral-Level Contrastive Learning for Hyperspectral Target Detection
    Wang, Yulei
    Chen, Xi
    Zhao, Enyu
    Song, Meiping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [10] Federated Graph Anomaly Detection via Contrastive Self-Supervised Learning
    Kong, Xiangjie
    Zhang, Wenyi
    Wang, Hui
    Hou, Mingliang
    Chen, Xin
    Yan, Xiaoran
    Das, Sajal K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14