Integrated perturbation theory for cosmological tensor fields. II. Loop corrections

被引:2
作者
Matsubara, Takahiko [1 ,2 ]
机构
[1] High Energy Accelerator Res Org KEK, Inst Particle & Nucl Studies, Oho 1-1, Tsukuba 3050801, Japan
[2] Grad Inst Adv Studies SOKENDAI, Tsukuba 3050801, Japan
关键词
EVOLUTION; MODES;
D O I
10.1103/PhysRevD.110.063544
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the previous paper [T. Matsubara, Phys. Rev. D 110, 063543 (2024).], the nonlinear perturbation theory of the cosmological density field is generalized to include the tensor-valued bias of astronomical objects, such as spins and shapes of galaxies and any other tensors of arbitrary ranks which are associated with objects that we can observe. We apply this newly developed method to explicitly calculate nonlinear power spectra and correlation functions both in real space and in redshift space. Multidimensional integrals that appear in loop corrections are reduced to combinations of one-dimensional Hankel transforms, thanks to the spherical basis of the formalism, and the final expressions are numerically evaluated in a very short time using an algorithm of the fast Fourier transforms such as FFTLog. As an illustrative example, numerical evaluations of loop corrections of the power spectrum and correlation function of the rank-2 tensor field are demonstrated with a simple model of tensor bias.
引用
收藏
页数:23
相关论文
共 44 条
[1]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[2]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248
[3]   Multipoint propagators in cosmological gravitational instability [J].
Bernardeau, Francis ;
Crocce, Martin ;
Scoccimarro, Roman .
PHYSICAL REVIEW D, 2008, 78 (10)
[4]   The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes [J].
Blas, Diego ;
Lesgourgues, Julien ;
Tram, Thomas .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (07)
[5]   Tidal alignment of galaxies [J].
Blazek, Jonathan ;
Vlah, Zvonimir ;
Seljak, Uros .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (08)
[6]   Beyond linear galaxy alignments [J].
Blazek, Jonathan A. ;
MacCrann, Niall ;
Troxel, M. A. ;
Fang, Xiao .
PHYSICAL REVIEW D, 2019, 100 (10)
[7]   Non-linear evolution of the angular momentum of protostructures from tidal torques [J].
Catelan, P ;
Theuns, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 282 (02) :455-469
[8]  
CATELAN P, 1995, MON NOT R ASTRON SOC, V276, P115
[9]   Intrinsic and extrinsic galaxy alignment [J].
Catelan, P ;
Kamionkowski, M ;
Blandford, RD .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 320 (01) :L7-L13
[10]   Cosmological information in the intrinsic alignments of luminous red galaxies [J].
Chisari, Nora Elisa ;
Dvorkin, Cora .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (12)