Microwave-assisted pyrolysis of industrial biomass waste: Insights into kinetic, characteristics and intrinsic mechanisms

被引:6
作者
Liu, Yang [1 ,2 ]
Ao, Wenya [1 ,3 ]
Fu, Jie [1 ]
Siyal, Asif Ali [1 ,4 ]
An, Qing [2 ]
Zhou, Chunbao [1 ]
Liu, Chenglong [1 ]
Zhang, Yingwen [1 ]
Chen, Zhiwen [3 ]
Yun, Huimin [1 ]
Dai, Jianjun [1 ]
Bi, Xiaotao [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem Engn, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V6T 1Z3, Canada
[3] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[4] Quaid e Awam Univ Engn Sci & Technol, Dept Environm Engn, Nawabshah, Pakistan
关键词
Microwave-assisted pyrolysis; Catalytic pyrolysis; Kinetic; Waste-to-energy; Reaction mechanism; BIO-OIL; GASIFICATION; SOAPSTOCK; TAR;
D O I
10.1016/j.energy.2024.132423
中图分类号
O414.1 [热力学];
学科分类号
摘要
Microwave-assisted pyrolysis is the preferred technology for enhancing the production of fuels and valuable chemicals. Therefore, pyrolysis experiments of furfural residue (FR) were performed using microwave equipment without microwave-absorbing additives. Further, to explore the interactions and intrinsic mechanisms of biomass components, thermogravimetric (TG), kinetic calculation, Py-GC/MS and TG-MS were also employed. Results showed that the temperatures and catalysts both affect the yields and compositions of products. Moreover, kinetic calculations showed a high-level consistency between FR pyrolysis and P3 mechanism. The product analysis also helps in the resolution of pyrolysis mechanism. For example, crystal substances in biochar were mainly SiO2, 2 , K2SO4, 2 SO 4 , KAlSi3O8, 3 O 8 , and K2SO4 2 SO 4 enhanced the reaction degree of biomass. While for bio-oil, the yield reached maximum ( 25 wt%) at 550 degrees C. The pH of bio-oil was acidic (2-4.3), and the main product in bio-oil was phenols, which was found the highest (84.63 %) at 700 degrees C. Interestingly, the interaction of cellulose and lignin promoted light hydrocarbon production. This research unveils innovative perspectives on the intrinsic mechanisms underlying microwave-assisted pyrolysis of biomass, which provides guidance for optimization of the microwave-assisted pyrolysis technology.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Microwave-Assisted Pyrolysis of Biomass Waste: A Mini Review
    Ethaib, Saleem
    Omar, Rozita
    Kamal, Siti Mazlina Mustapa
    Biak, Dayang Radiah Awang
    Zubaidi, Salah L.
    PROCESSES, 2020, 8 (09)
  • [2] Microwave-Assisted Pyrolysis of Forest Biomass
    Fernandez, I.
    Perez, S. F.
    Fernandez-Ferreras, J.
    Llano, T.
    ENERGIES, 2024, 17 (19)
  • [3] A review on the role of various machine learning algorithms in microwave-assisted pyrolysis of lignocellulosic biomass waste
    Mafat, Iradat Hussain
    Surya, Dadi Venkata
    Rao, Chinta Sankar
    Kandya, Anurag
    Basak, Tanmay
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 371
  • [4] Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review
    Ren, Xueyong
    Ghazani, Mohammad Shanb
    Zhu, Hui
    Ao, Wenya
    Zhang, Han
    Moreside, Emma
    Zhu, Jinjiao
    Yang, Pu
    Zhong, Na
    Bi, Xiaotao
    APPLIED ENERGY, 2022, 315
  • [5] Microwave-Assisted Pyrolysis of Leather Waste
    Gonzalez-Lucas, Maria
    Peinado, Manuel
    Vaquero, Juan J.
    Nozal, Leonor
    Aguirre, Juan Luis
    Gonzalez-Egido, Sergio
    ENERGIES, 2022, 15 (04)
  • [6] Microwave-assisted pyrolysis of biomass feedstocks: the way forward?
    Luque, Rafael
    Menendez, J. Angel
    Arenillas, Ana
    Cot, Jaume
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) : 5481 - 5488
  • [7] Effect of compound additive on microwave-assisted pyrolysis characteristics and products of Chlorella vulgaris
    Chen, Chunxiang
    Qi, Qianhao
    Zeng, Tianyang
    Fan, Dianzhao
    Zhao, Jian
    Qiu, Hongfu
    Huang, Haozhong
    JOURNAL OF THE ENERGY INSTITUTE, 2021, 98 : 188 - 198
  • [8] Effect of microwave-assisted organosolv fractionation on the chemical structure and decoupling pyrolysis behaviors of waste biomass
    Zheng, Anqing
    Zhao, Kun
    Sun, Jiangwei
    Jiang, Liqun
    Zhao, Zengli
    Huang, Zhen
    Wei, Guoqiang
    He, Fang
    Li, Haibin
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 131 : 120 - 127
  • [9] Understanding the role of CFD in microwave-assisted pyrolysis for biomass conversion
    Raje, Ankush
    Bhise, Ashlesha A.
    Surya, Dadi Venkata
    Kulkarni, Anirudh
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 179
  • [10] A Review on the Microwave-Assisted Pyrolysis of Waste Plastics
    Yang, Changze
    Shang, Hui
    Li, Jun
    Fan, Xiayu
    Sun, Jianchen
    Duan, Aijun
    PROCESSES, 2023, 11 (05)