Consumption of dietary turmeric promotes fat browning and thermogenesis in association with gut microbiota regulation in high-fat diet-fed mice

被引:0
|
作者
Yang, Chengcheng [1 ]
Du, Yao [1 ]
Zhao, Tong [1 ]
Zhao, Lu [1 ]
Liu, Lu [1 ]
Liu, Luyao [1 ]
Yang, Xingbin [1 ]
机构
[1] Shaanxi Normal Univ, Coll Food Engn & Nutr Sci, Shaanxi Engn Lab Food Green Proc & Safety Control, Xian 710119, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
TYPE-2; DIABETES-MELLITUS; ADIPOSE-TISSUE; OBESITY;
D O I
10.1039/d4fo01489h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study was designed to verify the anti-obesity effect of dietary turmeric powder (TP) as a traditional cooking spice and its underlying mechanism. The HFD-fed C57BL/6J mice were supplemented with or without TP (8%) for 12 weeks. The results indicated that the glucolipid metabolism disorder of high-fat diet (HFD)-fed mice was significantly ameliorated through the supplementation of TP. The consumption of TP also induced beige-fat development and brown adipose tissue (BAT)-derived nonshivering thermogenesis in HFD-fed obese mice. 16S rDNA-based microbiota or targeted metabolomics analysis indicated that TP ameliorated the intestinal microbiota dysbiosis and microbial metabolism abnormality caused by HFD, reflected by dramatically increasing the relative abundance of Muribaculaceae, Candidatus_Saccharimonas, and Bifidobacterium and production of short-chain fatty acids (SCFAs) and succinate. Interestingly, TP-induced BAT thermogenesis and iWAT browning were highly correlated with the reconstruction of the gut microbiome and formation of SCFAs and succinate. Collectively, these findings manifest beneficial actions of TP on the promotion of adipose browning and thermogenesis in association with gut microbiota reconstruction, and our findings may provide a promising way for preventing obesity. Turmeric supplementation effectively relieved the obese by promoting fat browning and thermogenesis in association with gut microbiota regulation in high-fat diet-fed mice.
引用
收藏
页码:8153 / 8167
页数:15
相关论文
共 50 条
  • [31] Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats
    Wang, Yu
    Yao, Weifan
    Li, Bo
    Qian, Shiyun
    Wei, Binbin
    Gong, Shiqiang
    Wang, Jing
    Liu, Mingyan
    Wei, Minjie
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2020, 52 (12): : 1959 - 1975
  • [32] Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice
    Huang, Rui
    Zhu, Zhenjun
    Wu, Shujian
    Wang, Juan
    Chen, Mengfei
    Liu, Wei
    Huang, Aohuan
    Zhang, Jumei
    Wu, Qingping
    Ding, Yu
    FOOD RESEARCH INTERNATIONAL, 2022, 157
  • [33] Undaria pinnatifidaimproves obesity-related outcomes in association with gut microbiota and metabolomics modulation in high-fat diet-fed mice
    Li, Lili
    Wang, Yuting
    Yuan, Jingyi
    Liu, Zhengyi
    Ye, Changqing
    Qin, Song
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (23) : 10217 - 10231
  • [34] Bidirectional interaction of nobiletin and gut microbiota in mice fed with a high-fat diet†
    Zhang, Man
    Zhang, Xin
    Zhu, Jieyu
    Zhao, Deng-Gao
    Ma, Yan-Yan
    Li, Dongli
    Ho, Chi-Tang
    Huang, Qingrong
    FOOD & FUNCTION, 2021, 12 (08) : 3516 - 3526
  • [35] Effects of Qingzhuan Maocha on Gut Microbiota in High-fat Diet Fed Mice
    Feng L.
    Gong Z.
    Liu P.
    Zheng P.
    Zheng L.
    Wang X.
    Gao S.
    Gui A.
    Journal of Chinese Institute of Food Science and Technology, 2021, 21 (07) : 87 - 96
  • [36] Laminarin favorably modulates gut microbiota in mice fed a high-fat diet
    Nguyen, Son G.
    Kim, Jungman
    Guevarra, Robin B.
    Lee, Ji-Hoon
    Kim, Eungpil
    Kim, Su-il
    Unno, Tatsuya
    FOOD & FUNCTION, 2016, 7 (10) : 4193 - 4201
  • [37] Natto alleviates hyperlipidemia in high-fat diet-fed mice by modulating the composition and metabolic function of gut microbiota
    Shang, Le -Yuan
    Zhang, Shuo
    Zhang, Min
    Sun, Xiao-Dong
    Wang, Qi
    Liu, Yu-Jie
    Zhao, Yan-Ni
    Zhao, Mei
    Wang, Peng-Jiao
    Gao, Xiu-Li
    JOURNAL OF FUNCTIONAL FOODS, 2024, 112
  • [38] Tibetan highland barley fiber improves obesity and regulates gut microbiota in high-fat diet-fed mice
    Gan, Linyao
    Han, Jing
    Li, Chenyao
    Tang, Jing
    Wang, Xuebing
    Ma, Yue
    Chen, Yefu
    Xiao, Dongguang
    Guo, Xuewu
    FOOD BIOSCIENCE, 2023, 53
  • [39] Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice
    Xu, Xinxing
    Dai, Mei
    Lao, Fei
    Chen, Fang
    Hu, Xiaosong
    Liu, Yuping
    Wu, Jihong
    JOURNAL OF FUNCTIONAL FOODS, 2020, 68
  • [40] Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correlation in High-Fat Diet-Fed ApoE-/- Mice
    Wu, Min
    Yang, Shengjie
    Wang, Songzi
    Cao, Yu
    Zhao, Ran
    Li, Xinye
    Xing, Yanwei
    Liu, Longtao
    FRONTIERS IN PHARMACOLOGY, 2020, 11