共 33 条
A novel simulation-assisted transfer method for bearing unknown fault diagnosis
被引:0
作者:

Huang, Fengfei
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China

Li, Xianxin
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China

Zhang, Kai
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China
Southwest Jiaotong Univ, State Key Lab Rail Transit Vehicle Syst, Chengdu, Peoples R China
Southwest Jiaotong Univ, Technol & Equipment Rail Transit Operat & Maintena, Chengdu 610031, Peoples R China Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China

Zheng, Qing
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China
Southwest Jiaotong Univ, State Key Lab Rail Transit Vehicle Syst, Chengdu, Peoples R China
Southwest Jiaotong Univ, Technol & Equipment Rail Transit Operat & Maintena, Chengdu 610031, Peoples R China Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China

Ma, Jiahao
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China

Ding, Guofu
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China
Southwest Jiaotong Univ, State Key Lab Rail Transit Vehicle Syst, Chengdu, Peoples R China
Southwest Jiaotong Univ, Technol & Equipment Rail Transit Operat & Maintena, Chengdu 610031, Peoples R China Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China
机构:
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China
[2] Southwest Jiaotong Univ, State Key Lab Rail Transit Vehicle Syst, Chengdu, Peoples R China
[3] Southwest Jiaotong Univ, Technol & Equipment Rail Transit Operat & Maintena, Chengdu 610031, Peoples R China
基金:
中国国家自然科学基金;
关键词:
finite element method;
rolling bearing;
unknown fault;
fault diagnosis;
deep learning;
D O I:
10.1088/1361-6501/ad6280
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Supervised data-driven bearing fault diagnosis methods rely on completed datasets of faults, which can be challenging for signals collected in real engineering. Recognizing unknown faults using a data-driven approach is particularly difficult, as purposefully modeling these faults is complex. To address this challenge, this study proposes a new simulation-assisted transfer bearing unknown fault diagnosis method for realizing unknown compound fault diagnosis of rotating machinery. Firstly, finite element method is used to obtain the compound fault data that does not exist in the historical data, and wavelet packet transform is performed on the simulated and measured signals to enhance the detailed features of the signals. Then, a deep convolutional feature fusion network based on hybrid multi-wavelet spatial attention is constructed to fuse the time-frequency information processed by different wavelet bases. Finally, by integrating the concepts of intra-class splitting and transfer learning, the model is fine-tuned using simulation data to recognize unknown compound faults of rolling bearings. The method validates the simulated signals' feasibility and the unknown faults' diagnostic validity under the publicly available rolling bearings dataset. Compared to the comparison methods, the method's accuracy increased by 2.86%, 2.61%, 5.41%, 4.77%, and 7.07%, respectively.
引用
收藏
页数:11
相关论文
共 33 条
- [1] Data Augmentation and Intelligent Fault Diagnosis of Planetary Gearbox Using ILoFGAN Under Extremely Limited Samples[J]. IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (03) : 1029 - 1037Chen, Mingzhi论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R ChinaShao, Haidong论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R ChinaDou, Haoxuan论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R ChinaLi, Wei论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R ChinaLiu, Bin论文数: 0 引用数: 0 h-index: 0机构: Univ Strathclyde, Dept Management Sci, Glasgow G1 1XQ, Scotland Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China
- [2] TFN: An interpretable neural network with time-frequency transform embedded for intelligent fault diagnosis[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 207Chen, Qian论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R ChinaDong, Xingjian论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R ChinaTu, Guowei论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R ChinaWang, Dong论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R ChinaCheng, Changming论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R ChinaZhao, Baoxuan论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R ChinaPeng, Zhike论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China Ningxia Univ, Sch Mech Engn, Yinchuan 750021, Ningxia, Peoples R China Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
- [3] Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72Chen, Xiaohan论文数: 0 引用数: 0 h-index: 0机构: Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, England Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R ChinaYang, Rui论文数: 0 引用数: 0 h-index: 0机构: Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R ChinaXue, Yihao论文数: 0 引用数: 0 h-index: 0机构: Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, England Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R ChinaHuang, Mengjie论文数: 0 引用数: 0 h-index: 0机构: Xian Jiaotong Liverpool Univ, Design Sch, Suzhou 215123, Peoples R China Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R ChinaFerrero, Roberto论文数: 0 引用数: 0 h-index: 0机构: Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, England Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R ChinaWang, Zidong论文数: 0 引用数: 0 h-index: 0机构: Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, England Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
- [4] Open-Set Fault Recognition and Inference for Rolling Bearing Based on Open Fault Semantic Subspace[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11Chen, Yu论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaTao, Laifa论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaLiu, Xue论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaMa, Jian论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaLu, Chen论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaLiu, Hongmei论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
- [5] A Multi-Source Weighted Deep Transfer Network for Open-Set Fault Diagnosis of Rotary Machinery[J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (03) : 1982 - 1993Chen, Zhuyun论文数: 0 引用数: 0 h-index: 0机构: South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China Pazhou Lab, Guangzhou 511442, Peoples R China Beijing Informat Sci Technol Univ, Beijing Key Lab Measurement Control Mech & Elect, Beijing 100192, Peoples R China South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaLiao, Yixiao论文数: 0 引用数: 0 h-index: 0机构: South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaLi, Jipu论文数: 0 引用数: 0 h-index: 0机构: South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaHuang, Ruyi论文数: 0 引用数: 0 h-index: 0机构: Pazhou Lab, Guangzhou 511442, Peoples R China South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 510640, Peoples R China South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaXu, Lei论文数: 0 引用数: 0 h-index: 0机构: South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaJin, Gang论文数: 0 引用数: 0 h-index: 0机构: South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China South China Univ Technol, Guangdong Prov Key Lab Tech & Equipment Macromol, Guangzhou 510640, Peoples R China South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaLi, Weihua论文数: 0 引用数: 0 h-index: 0机构: Pazhou Lab, Guangzhou 511442, Peoples R China South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 510640, Peoples R China South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
- [6] A hybrid of FEM simulations and generative adversarial networks to classify faults in rotor-bearing systems[J]. ISA TRANSACTIONS, 2021, 108 : 356 - 366Gao, Yun论文数: 0 引用数: 0 h-index: 0机构: Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R ChinaLiu, Xiaoyang论文数: 0 引用数: 0 h-index: 0机构: Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R ChinaHuang, Haizhou论文数: 0 引用数: 0 h-index: 0机构: Huadian Elect Power Res Inst, Hangzhou 310030, Peoples R China Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R ChinaXiang, Jiawei论文数: 0 引用数: 0 h-index: 0机构: Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China
- [7] A new multiple mixed augmentation-based transfer learning method for machinery fault diagnosis[J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)Ge, Hangqi论文数: 0 引用数: 0 h-index: 0机构: Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R ChinaShen, Changqing论文数: 0 引用数: 0 h-index: 0机构: Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R ChinaLin, Xinhai论文数: 0 引用数: 0 h-index: 0机构: CRRC Qishuyan Locomot & Rolling Stock Technol Res, Changzhou 213011, Peoples R China Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R ChinaWang, Dong论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R ChinaShi, Juanjuan论文数: 0 引用数: 0 h-index: 0机构: Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R ChinaHuang, Weiguo论文数: 0 引用数: 0 h-index: 0机构: Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R ChinaZhu, Zhongkui论文数: 0 引用数: 0 h-index: 0机构: Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
- [8] A new technique to construct a wavelet transform matching a specified signal with applications to digital, real time, spike, and overlap pattern recognition[J]. DIGITAL SIGNAL PROCESSING, 2006, 16 (01) : 24 - 44Guido, RC论文数: 0 引用数: 0 h-index: 0机构: Univ Sao Paulo, Sch Engn Sao Carlos, Dept Phys & Informat, Inst Phys Sao Carlos, BR-13560970 Sao Carlos, SP, BrazilSlaets, JFW论文数: 0 引用数: 0 h-index: 0机构: Univ Sao Paulo, Sch Engn Sao Carlos, Dept Phys & Informat, Inst Phys Sao Carlos, BR-13560970 Sao Carlos, SP, BrazilKöberle, R论文数: 0 引用数: 0 h-index: 0机构: Univ Sao Paulo, Sch Engn Sao Carlos, Dept Phys & Informat, Inst Phys Sao Carlos, BR-13560970 Sao Carlos, SP, BrazilAlmeida, UOB论文数: 0 引用数: 0 h-index: 0机构: Univ Sao Paulo, Sch Engn Sao Carlos, Dept Phys & Informat, Inst Phys Sao Carlos, BR-13560970 Sao Carlos, SP, BrazilPereira, JC论文数: 0 引用数: 0 h-index: 0机构: Univ Sao Paulo, Sch Engn Sao Carlos, Dept Phys & Informat, Inst Phys Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
- [9] Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM[J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)Guo, Yuan论文数: 0 引用数: 0 h-index: 0机构: Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R China Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R ChinaZhou, Jun论文数: 0 引用数: 0 h-index: 0机构: Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R China Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R ChinaDong, Zhenbiao论文数: 0 引用数: 0 h-index: 0机构: Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R China Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R ChinaShe, Huan论文数: 0 引用数: 0 h-index: 0机构: Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R China Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R ChinaXu, Weijia论文数: 0 引用数: 0 h-index: 0机构: Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R China Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R China
- [10] Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles[J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 226Han, Te论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China Tsinghua Univ, Dept Energy & Power Engn, Beijing, Peoples R China Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R ChinaLi, Yan-Fu论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China