Improving Prediction Accuracy using Random Forest Algorithm

被引:0
作者
Elsayed, Nesma [1 ]
Abd Elaleem, Sherif [2 ]
Marie, Mohamed [3 ]
机构
[1] Helwan Univ, Business Informat Syst Dept, Fac Commerce & Business Adm, Cairo, Egypt
[2] Helwan Univ, Fac Commerce & Business Adm, Business Adm Dept, Cairo, Egypt
[3] Helwan Univ, Fac Comp & Artificial Intelligence, Informat Syst Dept, Cairo, Egypt
关键词
Corporate bankruptcy; feature selection; financial ratios; prediction models; random forest; FINANCIAL RATIOS; BANKRUPTCY PREDICTION; SELECTION;
D O I
10.14569/IJACSA.2024.0150445
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One of the latest studies in predicting bankruptcy is the performance of the financial prediction models. Although several models have been developed, they often do not achieve high performance, especially when using an imbalanced data set. This highlights the need for more exact prediction models. This paper examines the application as well as the benefits of machine learning with the purpose of constructing prediction models in the field of corporate financial performance. There is a lack of scientific research related to the effects of using random forest algorithms in attribute selection and prediction process for enhancing financial prediction. This paper tests various feature selection methods along with different prediction models to fill the gap. The study used a quantitative approach to develop and propose a business failure model. The approach involved analyzing and preprocessing a large dataset of bankrupt and non-bankrupt enterprises. The performance of the model was then evaluated using various metrics such as accuracy, precision, and recall. Findings from the present study show that random forest is recommended as the best model to predict corporate bankruptcy. Moreover, findings write down that the proper use of attribute selection methods helps to enhance the prediction precision of the proposed models. The use of random forest algorithm in feature selection and prediction can produce more exact and more reliable results in predicting bankruptcy. The study proves the potential of machine learning techniques to enhance financial performance.
引用
收藏
页码:436 / 441
页数:6
相关论文
共 50 条
  • [31] Leveraging random forest in micro-enterprises credit risk modelling for accuracy and interpretability
    Uddin, Mohammad S.
    Chi, Guotai
    Al Janabi, Mazin A. M.
    Habib, Tabassum
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2022, 27 (03) : 3713 - 3729
  • [32] Optimizing Air Pollution Prediction With Random Forest Algorithm
    Singh, Sukhendra
    Kumar, Manoj
    Verma, Birendra Kumar
    Kumar, Sushil
    AEROSOL SCIENCE AND ENGINEERING, 2025,
  • [33] Improving random forest algorithm by selecting appropriate penalized method
    Farhadi, Zari
    Bevrani, Hossein
    Feizi-Derakhshi, Mohammad-Reza
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4380 - 4395
  • [34] Epileptic Seizure Prediction from the Scalp EEG Signals by using Random Forest Algorithm
    Hu, Ziyu
    Han, Chunxiao
    Guo, Fengjuan
    Qin, Qing
    Li, Shanshan
    Qin, Yingmei
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 669 - 674
  • [35] Prediction of rockburst classification using Random Forest
    Dong, Long-jun
    Li, Xi-bing
    Peng, Kang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (02) : 472 - 477
  • [36] Lung cancer prediction using random forest
    Rajini A.
    Jabbar M.A.
    Recent Advances in Computer Science and Communications, 2021, 14 (05) : 1650 - 1657
  • [37] Improving Windows Malware Detection Using the Random Forest Algorithm and Multi-View Analysis
    Suhaila, S. Syed
    Krishnan, K. Sundara
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2024, 34 (06) : 909 - 939
  • [38] Phosphorylation Sites prediction using Random Forest
    Ismail, Hamid D.
    Jones, Ahoi
    Kim, Jung H.
    Newman, Robert H.
    Dukka, B. K. C.
    2015 IEEE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2015,
  • [39] GLOBAL SOLAR RADIATION PREDICTION MODEL WITH RANDOM FOREST ALGORITHM
    Kor, Hakan
    THERMAL SCIENCE, 2021, 25 (25): : S31 - S39
  • [40] Collapse column prediction model based on random forest algorithm
    Hao Shuai
    Wang Huaixiu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 1045 - 1048