Improving Prediction Accuracy using Random Forest Algorithm

被引:0
|
作者
Elsayed, Nesma [1 ]
Abd Elaleem, Sherif [2 ]
Marie, Mohamed [3 ]
机构
[1] Helwan Univ, Business Informat Syst Dept, Fac Commerce & Business Adm, Cairo, Egypt
[2] Helwan Univ, Fac Commerce & Business Adm, Business Adm Dept, Cairo, Egypt
[3] Helwan Univ, Fac Comp & Artificial Intelligence, Informat Syst Dept, Cairo, Egypt
关键词
Corporate bankruptcy; feature selection; financial ratios; prediction models; random forest; FINANCIAL RATIOS; BANKRUPTCY PREDICTION; SELECTION;
D O I
10.14569/IJACSA.2024.0150445
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One of the latest studies in predicting bankruptcy is the performance of the financial prediction models. Although several models have been developed, they often do not achieve high performance, especially when using an imbalanced data set. This highlights the need for more exact prediction models. This paper examines the application as well as the benefits of machine learning with the purpose of constructing prediction models in the field of corporate financial performance. There is a lack of scientific research related to the effects of using random forest algorithms in attribute selection and prediction process for enhancing financial prediction. This paper tests various feature selection methods along with different prediction models to fill the gap. The study used a quantitative approach to develop and propose a business failure model. The approach involved analyzing and preprocessing a large dataset of bankrupt and non-bankrupt enterprises. The performance of the model was then evaluated using various metrics such as accuracy, precision, and recall. Findings from the present study show that random forest is recommended as the best model to predict corporate bankruptcy. Moreover, findings write down that the proper use of attribute selection methods helps to enhance the prediction precision of the proposed models. The use of random forest algorithm in feature selection and prediction can produce more exact and more reliable results in predicting bankruptcy. The study proves the potential of machine learning techniques to enhance financial performance.
引用
收藏
页码:436 / 441
页数:6
相关论文
共 50 条
  • [11] Prediction of PKCθ Inhibitory Activity Using the Random Forest Algorithm
    Hao, Ming
    Li, Yan
    Wang, Yonghua
    Zhang, Shuwei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2010, 11 (09) : 3413 - 3433
  • [12] Accurate prediction of sugarcane yield using a random forest algorithm
    Yvette Everingham
    Justin Sexton
    Danielle Skocaj
    Geoff Inman-Bamber
    Agronomy for Sustainable Development, 2016, 36
  • [13] Software maintainability prediction using an enhanced random forest algorithm
    Gupta, Shikha
    Chug, Anuradha
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (02): : 441 - 449
  • [14] Prediction of Permeability Using Random Forest and Genetic Algorithm Model
    Wang, Junhui
    Yan, Wanzi
    Wan, Zhijun
    Wang, Yi
    Lv, Jiakun
    Zhou, Aiping
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 125 (03): : 1135 - 1157
  • [15] A Novel Approach for Prediction of Human Disease using Symptoms by Multilayer Perceptron Algorithm to Improve Accuracy and Compared with Random Forest Algorithm
    Prabhu, S. Avinash
    Parthipan, V.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 700 - 705
  • [16] Disease Prediction: Smart Disease Prediction System using Random Forest Algorithm
    Swarupa, A. N. V. K.
    Sree, V. Heina
    Nookambika, S.
    Kishore, Y. Kiran Sai
    Teja, U. Ravi
    2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, SMART AND GREEN TECHNOLOGIES (ICISSGT 2021), 2021, : 48 - 51
  • [17] Improving Heart Disease Prediction Using Random Forest and AdaBoost Algorithms
    El Hamdaoui, Halima
    Boujraf, Said
    Chaoui, Nour El Houda
    Alami, Badreddine
    Maaroufi, Mustapha
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2021, 17 (11) : 60 - 75
  • [18] An Ensemble Framework to Improve the Accuracy of Prediction Using Clustered Random-Forest and Shrinkage Methods
    Farhadi, Zari
    Bevrani, Hossein
    Feizi-Derakhshi, Mohammad-Reza
    Kim, Wonjoon
    Ijaz, Muhammad Fazal
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [19] Using Random Forest for Protein Fold Prediction Problem: An Empirical Study
    Dehzangi, Abdollah
    Phon-Amnuaisuk, Somnuk
    Dehzangi, Omid
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2010, 26 (06) : 1941 - 1956
  • [20] Prediction of Employee Turn Over Using Random Forest Classifier with Intensive Optimized Pca Algorithm
    Wild Ali, Alaeldeen Bader
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 119 (04) : 3365 - 3382