Bioadhesive-Inspired Ionomer for Membrane Electrode Assembly Interface Reinforcement in Fuel Cells

被引:0
|
作者
Yu, Weisheng [1 ]
Xu, Yan [1 ]
Liu, Zhiru [1 ]
Luo, Fen [1 ]
Sun, Xu [1 ]
Li, Xiaojiang [1 ]
Duan, Fanglin [1 ]
Liang, Xian [1 ,2 ,3 ]
Wu, Liang [1 ]
Xu, Tongwen [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Chem & Mat Sci, Dept Appl Chem, Key Lab Precis & Intelligent Chem, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Inst Adv Technol, Appl Engn Technol Res Ctr Funct Membranes, Hefei 230026, Peoples R China
[3] Huainan Normal Univ, Sch Chem & Mat Engn, Huainan 232001, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; CROSS-LINKING; MUSSEL; ADHESIVE;
D O I
10.1021/jacs.4c06961
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anion exchange membrane fuel cells promise a sustainable and ecofriendly energy conversion pathway yet suffer from insufficient performance and durability. Drawing inspiration from mussel foot adhesion proteins for the first time, we herein demonstrate catechol-modified ionomers that synergistically reinforce the membrane electrode assembly interface and triple-phase boundary inside catalyst layers. The resulting ionomers present exceptional alkaline stability with only slight ionic conductivity declines after treatment in 2 M NaOH aqueous solution at 80 degrees C for 2500 h. Adopting catechol-modified ionomer as both anion exchange membrane and binder achieves a single-cell performance increase of 34%, and more importantly, endows fuel cell operation at a current density of 0.4 A cm(-2) for over 300 h with negligible performance degradation (with a cell voltage decay rate of 0.03 mV h(-1)). Combining theoretical and experimental investigations, we reveal the molecular adhesion mechanism between the catechol-modified ionomer and Pt catalyst and illuminate the effect on the catalyst layer microstructure. Of fundamental interest, this bioadhesive-inspired strategy is critical to enabling knowledge-driven ionomer design and is promising for diverse membrane electrode assembly configurational applications.
引用
收藏
页码:22590 / 22599
页数:10
相关论文
共 50 条
  • [41] Electrode Structuring via Carbon Nanotubes and Nafion Ionomer-Coated TiO2 Enhances the Durability of Proton Exchange Membrane Fuel Cells Under Carbon Corrosion Conditions
    Kim, Ohsub
    Lim, Katie Heeyum
    Kwon, Junhwa
    Yoo, Sung Jong
    Kim, Jin Young
    Cho, Sung Ki
    Park, Hyun S.
    Lee, So Young
    Seo, Bora
    Kim, Myeong-Geun
    Jang, Jong Hyun
    Park, Hee-Young
    SMALL, 2025,
  • [42] Ionomer immobilized onto nitrogen-doped carbon black as efficient and durable electrode binder and electrolyte for polymer electrolyte fuel cells
    Choi, Won Young
    Seo, Dong Jun
    Choi, Hyunguk
    Lee, Myeong Hwa
    Choi, Seo Won
    Yoon, Young Gi
    Kim, Tae Young
    Kim, Hansung
    Jung, Chi-Young
    ELECTROCHIMICA ACTA, 2022, 421
  • [43] Transport-Friendly Microstructure in SSC-MEA: Unveiling the SSC Ionomer-Based Membrane Electrode Assemblies for Enhanced Fuel Cell Performance
    Li, Min
    Ding, Han
    Song, Jingnan
    Hao, Bonan
    Zeng, Rui
    Li, Zhenyu
    Wu, Xuefei
    Fink, Zachary
    Zhou, Libo
    Russel, Thomas P.
    Liu, Feng
    Zhang, Yongming
    ADVANCED SCIENCE, 2024, 11 (39)
  • [44] Nano-engineering of a 3D-ordered membrane electrode assembly with ultrathin Pt skin on open-walled PdCo nanotube arrays for fuel cells
    Zeng, Yachao
    Zhang, Hongjie
    Wang, Zhiqiang
    Jia, Jia
    Miao, Shu
    Song, Wei
    Xiao, Yu
    Yu, Hongmei
    Shao, Zhigang
    Yi, Baolian
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (15) : 6521 - 6533
  • [45] Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers: An electrochemical study in solution and a membrane-electrode-assembly study in fuel cells
    He, Qinggang
    Mugadza, Tawanda
    Kang, Xiongwu
    Zhu, Xiaobing
    Chen, Shaowei
    Kerr, John
    Nyokong, Tebello
    JOURNAL OF POWER SOURCES, 2012, 216 : 67 - 75
  • [46] Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells
    Sassin, Megan B.
    Garsany, Yannick
    Gould, Benjamin D.
    Swider-Lyons, Karen E.
    ANALYTICAL CHEMISTRY, 2017, 89 (01) : 511 - 518
  • [47] Effect of Hydrophobic Particles in a Gas Diffusion Electrode on Cell Performance in Polymer Electrolyte Membrane Fuel Cells
    Kim, In-Tae
    Lee, Jae-Young
    Rim, Hyung-Ryul
    Lee, Hong-Ki
    Shim, Joongpyo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (11): : 9131 - 9141
  • [48] Characteristics of membrane-electrode assemblies of hydrogen-air fuel cells with PtCoCr/C catalyst
    Avakov, V. B.
    Bogdanovskaya, V. A.
    Ivanitskii, B. A.
    Kapustin, A. V.
    Kuzov, A. V.
    Landgraf, I. K.
    Modestov, A. D.
    Radina, M. V.
    Stankevich, M. M.
    Tarasevich, M. R.
    Tripachev, O. V.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2014, 50 (07) : 656 - 668
  • [49] Performance of the electrode based on silicon carbide supported platinum catalyst for proton exchange membrane fuel cells
    Andersen, Shuang Ma
    Larsen, Mikkel Juul
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 791 : 175 - 184
  • [50] Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells
    Obewhere, Oghenetega Allen
    Acurio-Cerda, Karen
    Sutradhar, Sourav
    Dike, Moses
    Keloth, Rajesh
    Dishari, Shudipto Konika
    CHEMICAL COMMUNICATIONS, 2024, 60 (90) : 13114 - 13142