A multicommuted system using bacterial cellulose for urease immobilization and copper (II)-MOF colorimetric sensor for urea spectrophotometric determination in milk

被引:5
作者
Rodrigues, Julyana C. [1 ]
Bezerra, Caio S. [2 ]
Lima, Lidiane M. A. [1 ]
Neves, Danielle D. [1 ]
Paim, Ana Paula S. [3 ]
Silva, Wagner E. [1 ]
Lavorante, Andre F. [1 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Quim, Rua Dom Manuel de Medeiros S-N, BR-52171900 Recife, PE, Brazil
[2] Univ Fed Rural Pernambuco, Dept Ciencias Comp, Rua Dom Manuel de Medeiros S-N, BR-52171900 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Dept Quim Fundamental, Ave Jornalista Anibal Fernandes S-N, BR-50740560 Recife, PE, Brazil
关键词
Metal-organic framework; Spectrophotometry; Adulterant; Flow analysis; Enzyme; Bacterial cellulose; POTENTIOMETRIC BIOSENSOR; AMMONIUM ION; FLOW; OXALATE;
D O I
10.1016/j.foodchem.2024.140454
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This work describes determining urea in milk samples using a multicommuted approach with a urease enzyme immobilized in bacterial cellulose and solid MOF as a colorimetric reagent. The Cu(2+)-MOF was characterized by FTIR spectroscopy, XRD, and SEM. The urea quantification was based on the urea hydrolysis reaction catalyzed by urease and reacted with Cu(2+)-MOF forming [Cu(NH3)4]2+, 3 ) 4 ] 2+ , monitored at 450 nm. Linear responses were obtained from 1.0 to 50.0 mg dL- 1 urea (R R = 0.9959, n =11), detection and quantitation limits of 0.082 mg dL- 1 and 0.272 mg dL- 1 respectively, analytical frequency of 8 determinations per hour, 0.8 mL sample solution consumption. Potential interfering studies have shown the selectivity of the proposed method. Addition and recovery tests were performed obtaining variation from 90 to 103%. Applying the F-test and t-test, the results showed no significant difference at the 95% confidence level Comparing the proposed and the reference method.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Polypyrrole-based amperometric flow injection biosensor for urea [J].
Adeloju, SB ;
Shaw, SJ ;
Wallace, GG .
ANALYTICA CHIMICA ACTA, 1996, 323 (1-3) :107-113
[2]   Bacterial cellulose membranes for environmental water remediation and industrial wastewater treatment [J].
Alves, A. A. ;
Silva, W. E. ;
Belian, M. F. ;
Lins, L. S. G. ;
Galembeck, A. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2020, 17 (09) :3997-4008
[3]  
Amiri A., 2023, Chapter 14: Application of metal-organic framework nanocomposites, P415, DOI [10.1039/9781839167485, DOI 10.1039/9781839167485]
[4]  
Arunvipas P, 2003, CAN J VET RES, V67, P60
[5]  
Azad T., 2016, International Journal of Food Contamination, V3, DOI [10.1186/s40550-016-0045-3, DOI 10.1186/S40550-016-0045-3]
[6]   Amperometric ammonium ion and urea determination with enzyme-based probes [J].
Bertocchi, P ;
Compagnone, D ;
Palleschi, G .
BIOSENSORS & BIOELECTRONICS, 1996, 11 (1-2) :1-10
[7]   Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites [J].
Castillo-Ortega, MM ;
Rodriguez, DE ;
Encinas, JC ;
Plascencia, M ;
Méndez-Velarde, FA ;
Olayo, R .
SENSORS AND ACTUATORS B-CHEMICAL, 2002, 85 (1-2) :19-25
[8]   Optical urea biosensor based on ammonium ion selective membrane [J].
Chen, HM ;
Wang, EJ .
ANALYTICAL LETTERS, 2000, 33 (06) :997-1011
[9]   Development of a predictive model for determination of urea in milk using silver nanoparticles and UV-Vis spectroscopy [J].
Dutta, Sadhan Jyoti ;
Chakraborty, Gourav ;
Chauhan, Vineet ;
Singh, Lochan ;
Sharanagat, Vijay Singh ;
Gahlawat, Vijay Kumar .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2022, 168
[10]   Analytical use of vegetal tissue and crude extract as enzymatic source. [J].
Fatibello, O ;
Vieira, IC .
QUIMICA NOVA, 2002, 25 (03) :455-464