Cross-domain bearing fault diagnosis using dual-path convolutional neural networks and multi-parallel graph convolutional networks

被引:5
作者
Zhang, Yong [1 ,2 ]
Zhang, Songzhao [1 ,3 ]
Zhu, Yuhao [1 ,3 ]
Ke, Wenlong [1 ,3 ]
机构
[1] Huzhou Univ, Sch Informat Engn, Huzhou 313000, Peoples R China
[2] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116081, Peoples R China
[3] Zhejiang Prov Key Lab Smart Management & Applicat, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearing fault diagnosis; Transfer learning; Domain adaptation; Convolutional neural networks; Graph convolutional networks;
D O I
10.1016/j.isatra.2024.06.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing fault diagnosis is significant in ensuring large machinery and equipment's safe and stable operation. However, inconsistent operating environments can lead to data distribution differences between source and target domains. As a result, models trained solely on source-domain data may not perform well when applied to the target domain, especially when the target-domain data is unlabeled. Existing approaches focus on improving domain adaptive methods for effective transfer learning but neglect the importance of extracting comprehensive feature information. To tackle this challenge, we present a bearing fault diagnosis approach using dual-path convolutional neural networks (CNNs) and multi-parallel graph convolutional networks (GCNs), called DPCMGCN, which can be applied to variable working conditions. To obtain complete feature information, DPCMGCN leverages dual-path CNNs to extract local and global features from vibration signals in both the source and target domains. The attention mechanism is subsequently applied to identify crucial features, which are converted into adjacency matrices. Multi-parallel GCNs are then employed to further explore the structural information among these features. To minimize the distribution differences between the two domains, we incorporate the multi-kernel maximum mean discrepancy (MK-MMD) domain adaptation method. By applying the DPC-MGCN approach for diagnosing bearing faults under diverse working conditions and comparing it with other methods, we demonstrate its superior performance on various datasets.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 45 条
[21]  
Long MS, 2018, ADV NEUR IN, V31
[22]   Transferable Representation Learning with Deep Adaptation Networks [J].
Long, Mingsheng ;
Cao, Yue ;
Cao, Zhangjie ;
Wang, Jianmin ;
Jordan, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (12) :3071-3085
[23]  
Luo Y, 2020, INT CONF ACOUST SPEE, P46, DOI [10.1109/ICASSP40776.2020.9054266, 10.1109/icassp40776.2020.9054266]
[24]   Rolling Bearing Fault Diagnosis Based on Deep Learning and Autoencoder Information Fusion [J].
Ma, Jianpeng ;
Li, Chengwei ;
Zhang, Guangzhu .
SYMMETRY-BASEL, 2022, 14 (01)
[25]   Activate or Not: Learning Customized Activation [J].
Ma, Ningning ;
Zhang, Xiangyu ;
Liu, Ming ;
Sun, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8028-8038
[26]   Fusion Domain-Adaptation CNN Driven by Images and Vibration Signals for Fault Diagnosis of Gearbox Cross-Working Conditions [J].
Mao, Gang ;
Zhang, Zhongzheng ;
Qiao, Bin ;
Li, Yongbo .
ENTROPY, 2022, 24 (01)
[27]   Deep Ensemble-Based Classifier for Transfer Learning in Rotating Machinery Fault Diagnosis [J].
Pacheco, Fannia ;
Drimus, Alin ;
Duggen, Lars ;
Cerrada, Mariela ;
Cabrera, Diego ;
Sanchez, Rene-Vinicio .
IEEE ACCESS, 2022, 10 :29778-29787
[28]   Rotating Machinery Fault Diagnosis Through a Transformer Convolution Network Subjected to Transfer Learning [J].
Pei, Xinglong ;
Zheng, Xiaoyang ;
Wu, Jinliang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[29]   Active Model-Based Fault Diagnosis in Reconfigurable Battery Systems [J].
Schmid, Michael ;
Gebauer, Emanuel ;
Hanzl, Christian ;
Endisch, Christian .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (03) :2584-2597
[30]   Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning [J].
Shao, Siyu ;
McAleer, Stephen ;
Yan, Ruqiang ;
Baldi, Pierre .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) :2446-2455