Efficiency and the core in NTU games in partition function form

被引:0
|
作者
Bimonte, Giovanna [1 ]
Senatore, Luigi [1 ]
Tramontano, Salvatore [2 ]
机构
[1] Univ Salerno, Dept Econ & Stat, Via Giovanni Paolo II,132, I-84048 Fisciano, Italy
[2] Univ Salerno, Dept Math, Via Giovanni Paolo II,132, I-84084 Fisciano, Italy
关键词
Partition function form games; Core with externalities; Efficiency; Convexity; C71; D62;
D O I
10.1007/s10479-024-06192-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to establish a necessary and sufficient condition for the non-emptiness of the core in NTU games in partition function form, given an externality scheme f is an element of Ex(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f \in \textsf{Ex}(N) $$\end{document}. We extend the notion of convexity to incorporate externality effects. By introducing a new concept of rationality, called collective rationality, we demonstrate the efficiency of the grand coalition N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N $$\end{document}. We also identify a sufficient condition for the efficiency of the grand coalition using the property of individual superadditivity.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Implementation of the recursive core for partition function form games
    Huang, Chen-Ying
    Sjostrom, Tomas
    JOURNAL OF MATHEMATICAL ECONOMICS, 2006, 42 (06) : 771 - 793
  • [2] THE CONSENSUS VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Ju, Yuan
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (03) : 437 - 452
  • [3] COMPROMISING IN PARTITION FUNCTION FORM GAMES AND COOPERATION IN PERFECT EXTENSIVE FORM GAMES
    Fukuda, E.
    Tijs, S. H.
    Branzei, R.
    Muto, S.
    INTERNATIONAL GAME THEORY REVIEW, 2006, 8 (03) : 329 - 338
  • [4] Marginality and convexity in partition function form games
    Alonso-Meijide, J. M.
    Alvarez-Mozos, M.
    Fiestras-Janeiro, M. G.
    Jimenez-Losada, A.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2021, 94 (01) : 99 - 121
  • [5] Marginality and convexity in partition function form games
    J. M. Alonso-Meijide
    M. Álvarez-Mozos
    M. G. Fiestras-Janeiro
    A. Jiménez-Losada
    Mathematical Methods of Operations Research, 2021, 94 : 99 - 121
  • [6] A Null-Player Axiom for the Myerson Value in Partition Function form Games: A Note
    Sanchez-Perez, Joss
    INTERNATIONAL GAME THEORY REVIEW, 2025,
  • [7] Supermodular NTU-games
    Koshevoy, Gleb
    Suzuki, Takamasa
    Talman, Dolf
    OPERATIONS RESEARCH LETTERS, 2016, 44 (04) : 446 - 450
  • [8] Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach
    Csercsik, David
    Koczy, Laszlo A.
    NETWORKS & SPATIAL ECONOMICS, 2017, 17 (04) : 1161 - 1184
  • [9] Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach
    Dávid Csercsik
    László Á. Kóczy
    Networks and Spatial Economics, 2017, 17 : 1161 - 1184
  • [10] Efficiency and stochastic stability in normal form games
    Man, Priscilla T. Y.
    GAMES AND ECONOMIC BEHAVIOR, 2012, 76 (01) : 272 - 284