Industrial Component Defect Detection Technology Based on Deep Learning

被引:0
|
作者
Bian, Kailun [1 ]
Chen, Guo [1 ]
Xie, Guoqing [1 ]
Li, Juntong [1 ]
Liu, Bocheng [1 ]
机构
[1] Nanchang Univ, Sch Software, Nanchang 330031, Jiangxi, Peoples R China
来源
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024 | 2024年
关键词
Object detection; Deep learning; Transformer; Yolo; Industrial component defect;
D O I
10.1145/3677182.3677297
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, with the advancement of deep learning technology, the task of industrial component defect detection has shifted from manual inspection to deep learning model detection. However, striking a balance between the precision and speed required by industrial production has become a new challenge. This paper categorizes the current mainstream object detection algorithms into three types: one-stage detection algorithms, two-stage detection algorithms, and transformer-based detection algorithms. The structures and characteristics of each type of algorithm are elucidated. Comparative experimental studies are conducted to analyze the advantages and disadvantages of these algorithms. The paper summarizes optimization methods and effects for each type of algorithm and offers a forward-looking perspective on the prospective trends in the evolution of defect detection algorithms.
引用
收藏
页码:638 / 644
页数:7
相关论文
共 50 条
  • [41] Defect Detection in Porcelain Industry based on Deep Learning Techniques
    Birlutiu, Adriana
    Burlacu, Adrian
    Kadar, Manuella
    Onita, Daniela
    2017 19TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2017), 2017, : 263 - 270
  • [42] Defect detection of MicroLED with low distinction based on deep learning
    Chen, Meiyun
    Chen, Jinbiao
    Li, Cheng
    Wang, Qianxue
    Takamasu, Kiyoshi
    OPTICS AND LASERS IN ENGINEERING, 2024, 173
  • [43] Transmission Line Pin Defect Detection Based on Deep Learning
    Li X.
    Liu H.
    Liu G.
    Su H.
    Dianwang Jishu/Power System Technology, 2021, 45 (08): : 2988 - 2995
  • [44] Ceramic tableware surface defect detection based on deep learning
    Sun, Pu
    Hua, Changchun
    Ding, Weili
    Hua, Changsheng
    Liu, Ping
    Lei, Ziqi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 141
  • [45] Cylinder Liner Defect Detection and Classification based on Deep Learning
    Gao, Chengchong
    Hao, Fei
    Song, Jiatong
    Chen, Ruwen
    Wang, Fan
    Liu, Benxue
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 150 - 159
  • [46] Ceramic tile surface defect detection based on deep learning
    Wan, Guang
    Fang, Hongbo
    Wang, Dengzhun
    Yan, Jianwei
    Xie, Benliang
    CERAMICS INTERNATIONAL, 2022, 48 (08) : 11085 - 11093
  • [47] Insulator Faults Detection Based on Deep Learning
    Adou, Mohamed Witti
    Xu, Huarong
    Chen, Guanhua
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 173 - 177
  • [48] A Survey of Surface Defect Detection Methods Based on Deep Learning
    Tao X.
    Hou W.
    Xu D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (05): : 1017 - 1034
  • [49] A New Method in Wheel Hub Surface Defect Detection: Object Detection Algorithm Based on Deep Learning
    Han, Kai
    Sun, Muyi
    Zhou, Xiaoguang
    Zhang, Guanhong
    Dang, Hao
    Liu, Zhicai
    2017 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2017, : 335 - 338
  • [50] Deep learning-based defect detection and recognition of a power grid inspection image
    Gu X.
    Tang D.
    Huang X.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (05): : 91 - 97