Industrial Component Defect Detection Technology Based on Deep Learning

被引:0
|
作者
Bian, Kailun [1 ]
Chen, Guo [1 ]
Xie, Guoqing [1 ]
Li, Juntong [1 ]
Liu, Bocheng [1 ]
机构
[1] Nanchang Univ, Sch Software, Nanchang 330031, Jiangxi, Peoples R China
来源
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024 | 2024年
关键词
Object detection; Deep learning; Transformer; Yolo; Industrial component defect;
D O I
10.1145/3677182.3677297
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, with the advancement of deep learning technology, the task of industrial component defect detection has shifted from manual inspection to deep learning model detection. However, striking a balance between the precision and speed required by industrial production has become a new challenge. This paper categorizes the current mainstream object detection algorithms into three types: one-stage detection algorithms, two-stage detection algorithms, and transformer-based detection algorithms. The structures and characteristics of each type of algorithm are elucidated. Comparative experimental studies are conducted to analyze the advantages and disadvantages of these algorithms. The paper summarizes optimization methods and effects for each type of algorithm and offers a forward-looking perspective on the prospective trends in the evolution of defect detection algorithms.
引用
收藏
页码:638 / 644
页数:7
相关论文
共 50 条
  • [1] Typical Defect Detection Technology of Transmission Line Based on Deep Learning
    Wang Wanguo
    Wang Zhenli
    Liu Bin
    Yang Yuechen
    Sun Xiaobin
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1185 - 1189
  • [2] Component identification and defect detection in transmission lines based on deep learning
    Zheng, Xiangyu
    Jia, Rong
    Aisikaer
    Gong, Linling
    Zhang, Guangru
    Dang, Jian
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (02) : 3147 - 3158
  • [3] Research progress of surface defect detection technology based on deep learning
    Li J.
    Li H.
    Hu X.
    Li S.
    Qiao J.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (03): : 774 - 790
  • [4] Copper Nodule Defect Detection in Industrial Processes Using Deep Learning
    Zhang, Zhicong
    Huang, Xiaodong
    Wei, Dandan
    Chang, Qiqi
    Liu, Jinping
    Jing, Qingxiu
    INFORMATION, 2024, 15 (12)
  • [5] Deep learning-based defect detection in industrial CT volumes of castings
    Dakak, A. R.
    Kaftandjian, V
    Duvauchelle, P.
    Bouvet, P.
    INSIGHT, 2022, 64 (11) : 647 - 658
  • [6] Defect Insulator Detection Method Based on Deep Learning
    Liu, Song
    Xiao, Jin
    Hu, Xiaoguang
    Pan, Lei
    Liu, Lei
    Long, Fei
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1622 - 1627
  • [7] Defect Detection of Pantograph Slide Based on Deep Learning and Image Processing Technology
    Wei, Xiukun
    Jiang, Siyang
    Li, Yan
    Li, Chenliang
    Jia, Limin
    Li, Yongguang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 947 - 958
  • [8] Industrial Laser Welding Defect Detection and Image Defect Recognition Based on Deep Learning Model Developed
    Deng, Honggui
    Cheng, Yu
    Feng, Yuxin
    Xiang, Junjiang
    SYMMETRY-BASEL, 2021, 13 (09):
  • [9] Research Progress on Deep Learning Based Defect Detection Technology for Solar Panels
    Wang Y.
    Guo J.
    Qi Y.
    Liu X.
    Han J.
    Zhang J.
    Zhang Z.
    Lian J.
    Yin X.
    EAI Endorsed Transactions on Energy Web, 2024, 11 : 1 - 8
  • [10] Surface defect detection of smartphone glass based on deep learning
    Yuechu Mao
    Julong Yuan
    Yongjian Zhu
    Yingguang Jiang
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 5817 - 5829