On asymptotically automatic sequences

被引:0
|
作者
Konieczny, Jakub [1 ,2 ]
机构
[1] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
关键词
automatic sequences; MULTIPLICATIVE FUNCTIONS; UNIFORM-DISTRIBUTION; VALUES; TRANSCENDENCE; POLYNOMIALS; RING;
D O I
10.4064/aa230619-26-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the notion of an asymptotically automatic sequence, which generalises the notion of an automatic sequence. While k-automatic sequences are characterised by finiteness of k-kernels, the k-kernels of asymptotically k-automatic sequences are only required to be finite up to equality almost everywhere. We prove basic closure properties and a linear bound on asymptotic subword complexity, show that results concerning frequencies of symbols are no longer true for the asymptotic analogue, and discuss some classification problems.
引用
收藏
页码:249 / 287
页数:40
相关论文
共 50 条
  • [21] The distribution of elements in automatic double sequences
    Moshe, Y
    DISCRETE MATHEMATICS, 2005, 297 (1-3) : 91 - 103
  • [22] ENUMERATION AND DECIDABLE PROPERTIES OF AUTOMATIC SEQUENCES
    Charlier, Emilie
    Rampersad, Narad
    Shallit, Jeffrey
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2012, 23 (05) : 1035 - 1066
  • [23] Factors of generalised polynomials and automatic sequences
    Byszewski, Jakub
    Konieczny, Jakub
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (03): : 981 - 985
  • [24] On the Nth linear complexity of automatic sequences
    Merai, Laszlo
    Winterhof, Arne
    JOURNAL OF NUMBER THEORY, 2018, 187 : 415 - 429
  • [25] Automatic Sequences and Zip-Specifications
    Grabmayer, Clemens
    Endrullis, Joerg
    Hendriks, Dimitri
    Klop, Jan Willem
    Moss, Lawrence S.
    2012 27TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2012, : 335 - 344
  • [26] On the joint subword complexity of automatic sequences
    Moshe, Yossi
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (38-40) : 3573 - 3588
  • [27] Automatic sequences: from rational bases to trees
    Rigo, Michel
    Stipulanti, Manon
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2022, 24 (01)
  • [28] On certain recurrent and automatic sequences in finite fields
    Lasjaunias, Alain
    Yao, Jia-Yan
    JOURNAL OF ALGEBRA, 2017, 478 : 133 - 152
  • [29] About frequencies of letters in generalized automatic sequences
    Nicolay, S.
    Rigo, M.
    THEORETICAL COMPUTER SCIENCE, 2007, 374 (1-3) : 25 - 40
  • [30] Automatic sequences and curves over finite fields
    Bridy, Andrew
    ALGEBRA & NUMBER THEORY, 2017, 11 (03) : 685 - 712