S2IT: Spectral-Spatial Interactive Transformer for Hyperspectral Image Classification

被引:0
作者
Wang, Minhui [1 ,2 ]
Sun, Yaxiu [1 ,2 ]
Xiang, Jianhong [1 ,2 ]
Zhong, Yu [3 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Key Lab Adv Ship Commun & Informat Technol, Harbin 150001, Peoples R China
[3] Agile & Intelligent Comp Key Lab Sichuan Prov, Chengdu 610000, Peoples R China
关键词
Convolutional neural networks; Sun; Convolutional neural network (CNN); hyperspectral image (HSI); spectral-spatial features; vision transformer (ViT); NETWORK;
D O I
10.1109/LGRS.2024.3449238
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) encompasses a wealth of spectral-spatial information, offering a sufficient foundation for classification. However, the presence of redundancy poses challenges for achieving accurate classification. In this letter, we design a spectral-spatial interactive transformer (S2IT) for HSI classification (HSIC). S2IT commences with a meticulously designed spectral-spatial reconstruction (S2R) module, which aims to augment the representation of shallow features. Subsequently, an adaptive asymmetric gating mechanism transformer (AGM-Former) aims to delve into and extract comprehensive local-global features from HSI. Ultimately, the spectral-spatial interactive attention (S2IA) synergizes the spectral-spatial features and enhances classification prowess. S2IT demonstrates rigorous experiments on three renowned datasets: Houston2013 (HU), Indian Pines (IP), and the University of Pavia (UP), which validates its effectiveness in enhancing HSIC accuracy.
引用
收藏
页数:5
相关论文
共 20 条
  • [1] Class-Aligned and Class-Balancing Generative Domain Adaptation for Hyperspectral Image Classification
    Feng, Jie
    Zhou, Ziyu
    Shang, Ronghua
    Wu, Jinjian
    Zhang, Tianshu
    Zhang, Xiangrong
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [2] Gulati A, 2020, Arxiv, DOI [arXiv:2005.08100, 10.48550/arXiv.2005.08100]
  • [3] SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers
    Hong, Danfeng
    Han, Zhu
    Yao, Jing
    Gao, Lianru
    Zhang, Bing
    Plaza, Antonio
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] PASSNet: A Spatial-Spectral Feature Extraction Network With Patch Attention Module for Hyperspectral Image Classification
    Ji, Renjie
    Tan, Kun
    Wang, Xue
    Pan, Chen
    Xin, Liang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [5] SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy
    Li, Jiafeng
    Wen, Ying
    He, Lianghua
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 6153 - 6162
  • [6] CNN-Enhanced Graph Convolutional Network With Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification
    Liu, Qichao
    Xiao, Liang
    Yang, Jingxiang
    Wei, Zhihui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8657 - 8671
  • [7] Hyperspectral Image Classification Using Group-Aware Hierarchical Transformer
    Mei, Shaohui
    Song, Chao
    Ma, Mingyang
    Xu, Fulin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Hyperspectral Image Classification with IFormer Network Feature Extraction
    Ren, Qi
    Tu, Bing
    Liao, Sha
    Chen, Siyuan
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [9] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Krishna, Gopal
    Dubey, Shiv Ram
    Chaudhuri, Bidyut B.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 277 - 281