Adjustable magnetic and wear properties of gradient Al-stainless steel materials fabricated by direct energy deposition

被引:0
作者
Dubinin, O. N. [1 ,4 ]
Chernodubov, D. A. [2 ]
Semenyuk, A. S. [3 ,4 ]
Shaysultanov, D. G. [3 ]
Zherebtsov, S. V. [3 ,4 ]
Evlashin, S. A. [1 ]
Stepanov, N. D. [3 ,4 ]
机构
[1] Skolkovo Inst Sci & Technol, Ctr Mat Technol, 30,Bldg 1 Bolshoy Blvd, Moscow 121205, Russia
[2] Kurchatov Inst, Natl Res Ctr, PI Kurchatova 1, Moscow 123182, Russia
[3] Belgorod State Univ, Lab Bulk Nanostruct Mat, Belgorod 308015, Russia
[4] St Petersburg State Marine Tech Univ, Lotsmanskaya St 3, St Petersburg 190121, Russia
关键词
Direct energy deposition; Gradient materials; Phase transformations; Magnetic properties; Wear resistance; MECHANICAL-PROPERTIES; MICROSTRUCTURE; COMPONENTS; RESISTANCE; HARDNESS;
D O I
10.1007/s40964-024-00798-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing enables the efficient production of intricate parts and the creation of multi-material mixtures of functionally graded materials. Such materials can demonstrate spatially variable mechanical and functional properties and thus can be attractive for various applications. In this work, we have produced gradient materials from a mixture of 316L stainless steel and pure Al by direct energy deposition. It was revealed that a relatively small (5-10 wt.%) addition of Al can turn paramagnetic steel into the ferromagnetic material with saturation magnetization up to 118 emu g-1 and enhance the wear resistance from similar to 6x10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 6\times {10}<^>{-4}$$\end{document} to similar to 1.5-3.0x10-5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 1.5-3.0\times {10}<^>{-5}$$\end{document}mm2/N/m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{mm}}<^>{2}/\text{N}/\text{m}$$\end{document}. The changes in properties were associated with the transformation of the FCC structure of steel to dual-phase BCC + B2, which occurred in reasonable agreement with the CALPHAD calculations. The obtained gradient materials can be possibly used for cost-effective shielding applications.
引用
收藏
页码:2983 / 2989
页数:7
相关论文
共 33 条
[1]   A market assessment of additive manufacturing potential for the aerospace industry [J].
Altiparmak, Sadettin Cem ;
Xiao, Bowen .
JOURNAL OF MANUFACTURING PROCESSES, 2021, 68 :728-738
[2]   Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties [J].
Baufeld, Bernd ;
Van der Biest, Omer ;
Gault, Rosemary .
MATERIALS & DESIGN, 2010, 31 :S106-S111
[3]   A Combinatorial Approach for Assessing the Magnetic Properties of High Entropy Alloys: Role of Cr in AlCoxCr1-xFeNi [J].
Borkar, Tushar ;
Chaudhary, Varun ;
Gwalani, Bharat ;
Choudhuri, Deep ;
Mikler, Calvin V. ;
Soni, Vishal ;
Alam, Talukder ;
Ramanujan, Raju V. ;
Banerjee, Rajarshi .
ADVANCED ENGINEERING MATERIALS, 2017, 19 (08)
[4]   Influence of hardness on the wear resistance of 17-4 PH stainless steel evaluated by the pin-on-disc testing [J].
Bressan, J. D. ;
Daros, D. P. ;
Sokolowski, A. ;
Mesquita, R. A. ;
Barbosa, C. A. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 205 (1-3) :353-359
[5]   Additive manufacturing of magnetic materials [J].
Chaudhary, V. ;
Mantri, S. A. ;
Ramanujan, R. V. ;
Banerjee, R. .
PROGRESS IN MATERIALS SCIENCE, 2020, 114
[6]   Additive manufacturing of functionally graded Co-Fe and Ni-Fe magnetic materials [J].
Chaudhary, Varun ;
Yadav, Nartu Mohan Sai Kiran Kumar ;
Mantri, Srinivas Aditya ;
Dasari, Sriswaroop ;
Jagetia, Abhinav ;
Ramanujan, R., V ;
Banerjee, R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 823
[7]   Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys [J].
Ding, Y. ;
Muniz-Lerma, J. A. ;
Trask, M. ;
Chou, S. ;
Walker, A. ;
Brochu, M. .
MRS BULLETIN, 2016, 41 (10) :745-751
[8]   Gradient soft magnetic materials produced by additive manufacturing from non-magnetic powders [J].
Dubinin, O. N. ;
Chernodubov, D. A. ;
Kuzminova, Y. O. ;
Shaysultanov, D. G. ;
Akhatov, I. S. ;
Stepanov, N. D. ;
Evlashin, S. A. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 300
[9]   Direct laser deposition of Cu-Mo functionally graded layers for dissimilar joining titanium alloys and steels [J].
Gushchina, M. O. ;
Klimova-Korsmik, O. G. ;
Turichin, G. A. .
MATERIALS LETTERS, 2022, 307
[10]   Multilayer composite Ti-6Al-4 V/Cp-Ti alloy produced by laser direct energy deposition [J].
Gushchina, Marina O. ;
Kuzminova, Yulia O. ;
Dubinin, Oleg N. ;
Evlashin, Stanislav A. ;
Vildanov, Arthur M. ;
Klimova-Korsmik, Olga G. ;
Turichin, Gleb A. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 124 (3-4) :907-918