Invariants of Immersions on n-Dimensional Affine Manifold

被引:0
作者
Khadjiev, Djavvat [1 ]
Beshimov, Gayrat [1 ]
Oren, Idris [2 ]
机构
[1] Uzbek Acad Sci, VI Romanovsky Inst Math, Natl Univ Uzbekistan, Tashkent 100125, Uzbekistan
[2] Karadeniz Tech Univ, Fac Sci, Dept Math, TR-61080 Trabzon, Turkiye
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2024年 / 37卷 / 02期
关键词
Connection; Riemannian curvature; tensor; Invariant; ISOMETRIC IMMERSIONS; DIFFERENTIAL INVARIANTS; RIEMANNIAN SPACE; RECOVERY;
D O I
10.35378/gujs.1037048
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Main results: The system of Christoffel symbols of the connection of an immersion 4.: J-, R n of an n-dimensional manifold J in the n-dimensional linear space R n is a system of generators of the differential field of all Aff (n)-invariant differential rational functions of 4 . , where Aff (n) is the group of all affine transformations of R n . A similar result have obtained for the subgroup SAff (n) of Aff (n) generated by all unimodular linear transformations and parallel translations of R n . Rigidity and uniqueness theorems for immersions 4.: J-, R n in geometries of groups Aff (n) and SAff (n) were obtained. These theorems are given in terms of the affine connection and the volume form of immersions.
引用
收藏
页码:924 / 937
页数:14
相关论文
共 26 条
[1]  
Aminov Yu. A., 2000, GEOMETRY VECTOR FIEL
[2]  
[Anonymous], 1993, Global Affine Differential Geometry of Hypersurfaces
[3]   Invariant theory and reversible-equivariant vector fields [J].
Antoneli, Fernando ;
Baptistelli, Patricia H. ;
Dias, Ana Paula S. ;
Manoel, Miriam .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) :649-663
[4]  
Baptistelli P. H., 2005, Cadornos De Matema'tica, V6, P237
[5]   Submanifolds of constant sectional curvature in pseudo-Riemannian manifolds [J].
Barbosa, JL ;
Ferreira, W ;
Tenenblat, K .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1996, 14 (04) :381-401
[6]  
Boothby W.M., 1975, An introduction to differential manifolds and Riemannian geometry
[7]   Isometric immersions of space forms into Riemannian and pseudo-Riemannian spaces of constant curvature [J].
Borisenko, AA .
RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (03) :425-497
[8]   Isometric immersions of pseudo-Riemannian space forms [J].
Chen, Q ;
Zuo, DF ;
Cheng, Y .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 52 (03) :241-262
[9]   On the recovery of a surface with prescribed first and second fundamental forms [J].
Ciarlet, PG ;
Larsonneur, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (02) :167-185
[10]  
Doffou M. J., 1995, P 1995 INT S SYMB AL