Asymptotic expansions for a class of generalized holomorphic Eisenstein series, Ramanujan's formula for ζ(2k+1), Weierstraß' elliptic and allied functions

被引:0
作者
Katsurada, Masanori [1 ]
Noda, Takumi [2 ]
机构
[1] Keio Univ, Fac Econ, Dept Math, 4-1-1 Hiyoshi,Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[2] Nihon Univ, Coll Engn, Dept Math, 1 Nakagawara, Tokusada, Fukushima 9368642, Japan
关键词
Eisenstein series; Asymptotic expansion; Ramanujan's formula; Weierstra ss'elliptic function; Mellin-Barnes integral; ANALYTIC CONTINUATION;
D O I
10.1007/s11139-024-00911-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of generalized holomorphic Eisenstein series, we establish complete asymptotic expansions (Theorems 1 and 2). These, together with the explicit expression of the latter remainder (Theorem 3), naturally transfer to several new variants of the celebrated formulae of Euler and of Ramanujan for specific values of the Riemann zeta-function (Theorem 4 and Corollaries 4.1-4.5), and to various modular type relations for the classical Eisenstein series of any even integer weight (Corollary 4.6) as well as for Weierstra ss' elliptic and allied functions (Corollaries 4.7-4.9). Crucial roles in the proofs are played by certain Mellin-Barnes type integrals, which are manipulated with several properties Kummer's confluent hypergeometric functions.
引用
收藏
页码:679 / 715
页数:37
相关论文
共 22 条
[1]  
Berndt B.C., 1989, RAMANUJANS NOTEBOOKS, DOI [10.1007/978-1-4612-4530-8, DOI 10.1007/978-1-4612-4530-8]
[2]  
Berndt B.C., 1977, Rocky Mt. J. Math., V7, P147
[3]  
Berndt B.C., 2006, STUDENT SEMINAR LIB, V34
[4]  
Berndt B.C., 1975, Acta Arith., V28, P299
[5]  
BERNDT BC, 1975, J REINE ANGEW MATH, V272, P182
[6]   GENERALIZED DEDEKIND ETA-FUNCTIONS AND GENERALIZED DEDEKIND SUMS [J].
BERNDT, BC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 178 (APR) :495-508
[7]  
Erdlyi A., 1953, HIGHER TRANSCENDENTA
[8]  
IVIC A, 1985, RIEMANN ZETA FUNCTIO
[9]  
Katsurada A., 2020, VARIOUS ASPECTS MULT, V84, P205
[10]   Complete asymptotic expansions associated with Epstein zeta-functions [J].
Katsurada, Masanori .
RAMANUJAN JOURNAL, 2007, 14 (02) :249-275