Regulating CsPbI3 crystal growth for efficient printable perovskite solar cells and minimodules

被引:1
作者
Cui, Yuqi [1 ,3 ]
Tan, Chengyu [1 ,3 ]
Zhang, Rui [1 ]
Tan, Shan [1 ]
Li, Yiming [1 ]
Wu, Huijue [1 ]
Shi, Jiangjian [1 ]
Luo, Yanhong [1 ,3 ,4 ]
Li, Dongmei [1 ,3 ,4 ]
Meng, Qingbo [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Renewable Energy Lab, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
来源
SCIENCE CHINA-MATERIALS | 2024年
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
perovskite solar cells; inorganic perovskite modules; intermediate phase regulation; CsPbI3; blade coating; HALIDE PEROVSKITE; SCALABLE FABRICATION; MODULES;
D O I
10.1007/s40843-024-3046-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large pinhole-free, high-crystal-quality perovskite films are the key to realizing efficient, stable CsPbI3 perovskite modules. In this work, we use the crystal growth modulation strategy to prepare high-quality CsPbI3 films from small to large sizes using a new precursor solution with CsI/DMAPbI(3)/PbI2 in a DMAAc/DMF mixed solvent (DMAAc: dimethylamine acetate). The champion small-size CsPbI3 device presents a photoelectric conversion efficiency (PCE) above 21% and a certified PCE of 20.05%, and the best blade-coated CsPbI3 minimodule exhibits a PCE of 18.3% for an aperture area of 12.39 cm(2) and a PCE of 19.9% for an active area of 11.40 cm(2). In addition, the composition engineering of the precursor solution toward CsPbI3 crystallization is explored: the DMAAc/DMF mixed solvent can facilitate phase transformation and reduce the nucleation rate, and the mixture of PbI2 and DMAPbI(3) will further improve the film microstructure and uniformity. Consequently, the anti-humidity stability and phase stability of the CsPbI3 films are greatly improved, and the corresponding devices exhibit good operational stability. CsPbI3 modules with simple encapsulation also present excellent long-term storage stability over 150 days. This crystal growth regulation strategy provides a new method to produce large-scale CsPbI3 and even hybrid perovskite solar cells for future commercialization.
引用
收藏
页码:1343 / 1350
页数:8
相关论文
共 50 条
  • [41] 20.67%-Efficiency Inorganic CsPbI3 Solar Cells Enabled by Zwitterion Ion Interface Treatment
    Zou, Hong
    Duan, Yuwei
    Yang, Shaomin
    Xu, Dongfang
    Yang, Lu
    Cui, Jian
    Zhou, Hui
    Wu, Meizi
    Wang, Jungang
    Lei, Xuruo
    Zhang, Na
    Liu, Zhike
    SMALL, 2023, 19 (02)
  • [42] A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells
    Tian, Chengbo
    Zhang, Shujing
    Mei, Anyi
    Rong, Yaoguang
    Hu, Yue
    Du, Kai
    Duan, Miao
    Sheng, Yusong
    Jiang, Pei
    Xu, Gengzhao
    Han, Hongwei
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) : 10835 - 10841
  • [43] Oriented Perovskite Crystal towards Efficient Charge Transport in FASnI3 Perovskite Solar Cells
    Gu, Wenwen
    Xu, Xin
    Chen, Junwen
    Ma, Ben
    Qin, Minchao
    Zhu, Wenjing
    Qian, Jie
    Qin, Zhaotong
    Shen, Wei
    Lu, Yao
    Zhang, Wenzhu
    Chen, Shufen
    Lu, Xinhui
    Huang, Wei
    SOLAR RRL, 2020, 4 (10):
  • [44] Regulating the lattice strain in perovskite films to obtain efficient and stable perovskite solar cells
    Wang, Qinqin
    Jiang, Xiaoqing
    Peng, Cheng
    Zhang, Jiakang
    Jiang, Haokun
    Bu, Hongkai
    Yang, Guangyue
    Wang, Hao
    Zhou, Zhongmin
    Guo, Xin
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [45] Regulating perovskite/PCBM interface for highly efficient and stable inverted perovskite solar cells
    Gu, Wei-Min
    Zhao, Mingming
    Wang, Qing
    Gong, Kun
    Li, Xuli
    Sun, Yan
    Sun, Shaojing
    Yang, Guang
    Hu, Chunming
    Jiang, Ke-Jian
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [46] Introducing Postmetalation Metal-Organic Framework to Control Perovskite Crystal Growth for Efficient Perovskite Solar Cells
    Liu, Chi-Kwen
    Wu, Kuo-Hung
    Lu, Yen-An
    Hsiao, Li-Yin
    Lai, Kuan-Wen
    Chu, Chih-Wei
    Ho, Kuo-Chuan
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (50) : 60125 - 60134
  • [47] Current State and Future Perspectives of Printable Organic and Perovskite Solar Cells
    Li, Fengzhu
    Lin, Francis R.
    Jen, Alex K. -Y.
    ADVANCED MATERIALS, 2024, 36 (17)
  • [48] Nanosheet-based printable perovskite solar cells
    Guo, Daipeng
    Yu, Jiaguo
    Fan, Ke
    Zou, Haiyuan
    He, Bowen
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 159 : 518 - 525
  • [49] Ink engineering for slot-die coated perovskite solar cells and minimodules
    Li, Bowei
    Zhang, Wei
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (03):
  • [50] Highly-Stable CsPbI3 Perovskite Solar Cells with an Efficiency of 21.11% via Fluorinated 4-Amino-Benzoate Cesium Bifacial Passivation
    Xu, Dongfang
    Wang, Jungang
    Duan, Yuwei
    Yang, Shaomin
    Zou, Hong
    Yang, Lu
    Zhang, Na
    Zhou, Hui
    Lei, Xuruo
    Wu, Meizi
    Liu, Shengzhong
    Liu, Zhike
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (44)