A privacy-preserving federated graph learning framework for threat detection in IoT trigger-action programming

被引:1
作者
Xing, Yongheng [1 ]
Hu, Liang [1 ]
Du, Xinqi [2 ]
Shen, Zhiqi [3 ,4 ]
Hu, Juncheng [1 ]
Wang, Feng [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116081, Peoples R China
[3] Nanyang Technol Univ, Joint NTU UBC Res Ctr Excellence Act Living Elderl, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
Trigger-action programming; Rule threat detection; Privacy protection; Federated learning; Graph attention network;
D O I
10.1016/j.eswa.2024.124724
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trigger-Action Programming (TAP) is a common user-programming paradigm in Internet of Things (IoT) smart home platforms, allowing users to create customized automation rules to match IoT devices and network services. However, the potential security threats associated with TAP rules are often overlooked or underestimated by users. To address this issue, we propose PFTAP, a novel federated graph learning framework for threat detection of TAP rules while simultaneously protecting user data and privacy. First, we propose a hierarchical graph attention network. This network comprises intra-rule attention and inter-rule attention modules, which enable the learning of comprehensive feature representations for triggers and actions. By capturing the intricate relationships between different rules, the network enhances the detection accuracy of risky TAP rules. Moreover, our framework is based on federated learning and integrates symmetric encryption and local differential privacy techniques, aiming to safeguard user privacy from unauthorized access or tampering. To evaluate the effectiveness of our framework, we conduct experiments using an extensive dataset of IFTTT rules. The experimental results convincingly demonstrate that PFTAP outperforms state-of-the-art methods in terms of threat detection performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [42] Privacy-preserving Cross-domain Recommendation with Federated Graph Learning
    Tian, Changxin
    Xie, Yuexiang
    Chen, Xu
    Li, Yaliang
    Zhao, Xin
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [43] FedGKD: Federated Graph Knowledge Distillation for privacy-preserving rumor detection
    Zheng, Peng
    Dou, Yong
    Yan, Yeqing
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [44] An Efficient and Secure Privacy-Preserving Federated Learning Framework Based on Multiplicative Double Privacy Masking
    Shen, Cong
    Zhang, Wei
    Zhou, Tanping
    Zhang, Yiming
    Zhang, Lingling
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 4729 - 4748
  • [45] A Privacy-Preserving Federated Learning Framework for IoT Environment Based on Secure Multi-party Computation
    Geng, Tieming
    Liu, Jian
    Huang, Chin-Tser
    [J]. 2024 IEEE ANNUAL CONGRESS ON ARTIFICIAL INTELLIGENCE OF THING, AIOT 2024, 2024, : 117 - 122
  • [46] Privacy-Preserving Federated Transfer Learning for Driver Drowsiness Detection
    Zhang, Linlin
    Saito, Hideo
    Yang, Liang
    Wu, Jiajie
    [J]. IEEE ACCESS, 2022, 10 : 80565 - 80574
  • [47] Enhancing Privacy-Preserving Intrusion Detection through Federated Learning
    Alazab, Ammar
    Khraisat, Ansam
    Singh, Sarabjot
    Jan, Tony
    [J]. ELECTRONICS, 2023, 12 (16)
  • [48] A Semantic Web Approach to Simplifying Trigger-Action Programming in the IoT
    Corno, Fulvio
    De Russis, Luigi
    Roffarello, Alberto Monge
    [J]. COMPUTER, 2017, 50 (11) : 18 - 24
  • [49] Advanced artificial intelligence with federated learning framework for privacy-preserving cyberthreat detection in IoT-assisted sustainable smart cities
    Ragab, Mahmoud
    Ashary, Ehab Bahaudien
    Alghamdi, Bandar M.
    Aboalela, Rania
    Alsaadi, Naif
    Maghrabi, Louai A.
    Allehaibi, Khalid H.
    [J]. SCIENTIFIC REPORTS, 2025, 15 (01):
  • [50] A Verifiable Privacy-Preserving Federated Learning Framework Against Collusion Attacks
    Chen, Yange
    He, Suyu
    Wang, Baocang
    Feng, Zhanshen
    Zhu, Guanghui
    Tian, Zhihong
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3918 - 3934