A privacy-preserving federated graph learning framework for threat detection in IoT trigger-action programming

被引:1
|
作者
Xing, Yongheng [1 ]
Hu, Liang [1 ]
Du, Xinqi [2 ]
Shen, Zhiqi [3 ,4 ]
Hu, Juncheng [1 ]
Wang, Feng [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116081, Peoples R China
[3] Nanyang Technol Univ, Joint NTU UBC Res Ctr Excellence Act Living Elderl, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
Trigger-action programming; Rule threat detection; Privacy protection; Federated learning; Graph attention network;
D O I
10.1016/j.eswa.2024.124724
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trigger-Action Programming (TAP) is a common user-programming paradigm in Internet of Things (IoT) smart home platforms, allowing users to create customized automation rules to match IoT devices and network services. However, the potential security threats associated with TAP rules are often overlooked or underestimated by users. To address this issue, we propose PFTAP, a novel federated graph learning framework for threat detection of TAP rules while simultaneously protecting user data and privacy. First, we propose a hierarchical graph attention network. This network comprises intra-rule attention and inter-rule attention modules, which enable the learning of comprehensive feature representations for triggers and actions. By capturing the intricate relationships between different rules, the network enhances the detection accuracy of risky TAP rules. Moreover, our framework is based on federated learning and integrates symmetric encryption and local differential privacy techniques, aiming to safeguard user privacy from unauthorized access or tampering. To evaluate the effectiveness of our framework, we conduct experiments using an extensive dataset of IFTTT rules. The experimental results convincingly demonstrate that PFTAP outperforms state-of-the-art methods in terms of threat detection performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] FedDetect: A Novel Privacy-Preserving Federated Learning Framework for Energy Theft Detection in Smart Grid
    Wen, Mi
    Xie, Rong
    Lu, Kejie
    Wang, Liangliang
    Zhang, Kai
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (08): : 6069 - 6080
  • [22] Privacy-preserving Federated Learning System for Fatigue Detection
    Mohammadi, Mohammadreza
    Allocca, Roberto
    Eklund, David
    Shrestha, Rakesh
    Sinaei, Sima
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 624 - 629
  • [23] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [24] A Privacy-preserving Data Alignment Framework for Vertical Federated Learning
    Gao, Ying
    Xie, Yuxin
    Deng, Huanghao
    Zhu, Zukun
    Zhang, Yiyu
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (08): : 3419 - 3427
  • [25] Privacy-preserving federated learning framework in multimedia courses recommendation
    Qin, YangJie
    Li, Ming
    Zhu, Jia
    WIRELESS NETWORKS, 2023, 29 (04) : 1535 - 1544
  • [26] Privacy-Preserving Big Data Security for IoT With Federated Learning and Cryptography
    Awan, Kamran Ahmad
    Din, Ikram Ud
    Almogren, Ahmad
    Rodrigues, Joel J. P. C.
    IEEE ACCESS, 2023, 11 : 120918 - 120934
  • [27] Design and implementation of privacy-preserving federated learning algorithm for consumer IoT
    Zhao B.
    Ji Y.
    Shi Y.
    Jiang X.
    Alexandria Engineering Journal, 2024, 106 : 206 - 216
  • [28] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [29] A Game-theoretic Framework for Privacy-preserving Federated Learning
    Zhang, Xiaojin
    Fan, Lixin
    Wang, Siwei
    Li, Wenjie
    Chen, Kai
    Yang, Qiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [30] Privacy-preserving federated learning framework in multimedia courses recommendation
    YangJie Qin
    Ming Li
    Jia Zhu
    Wireless Networks, 2023, 29 : 1535 - 1544