A privacy-preserving federated graph learning framework for threat detection in IoT trigger-action programming

被引:1
|
作者
Xing, Yongheng [1 ]
Hu, Liang [1 ]
Du, Xinqi [2 ]
Shen, Zhiqi [3 ,4 ]
Hu, Juncheng [1 ]
Wang, Feng [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116081, Peoples R China
[3] Nanyang Technol Univ, Joint NTU UBC Res Ctr Excellence Act Living Elderl, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
Trigger-action programming; Rule threat detection; Privacy protection; Federated learning; Graph attention network;
D O I
10.1016/j.eswa.2024.124724
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trigger-Action Programming (TAP) is a common user-programming paradigm in Internet of Things (IoT) smart home platforms, allowing users to create customized automation rules to match IoT devices and network services. However, the potential security threats associated with TAP rules are often overlooked or underestimated by users. To address this issue, we propose PFTAP, a novel federated graph learning framework for threat detection of TAP rules while simultaneously protecting user data and privacy. First, we propose a hierarchical graph attention network. This network comprises intra-rule attention and inter-rule attention modules, which enable the learning of comprehensive feature representations for triggers and actions. By capturing the intricate relationships between different rules, the network enhances the detection accuracy of risky TAP rules. Moreover, our framework is based on federated learning and integrates symmetric encryption and local differential privacy techniques, aiming to safeguard user privacy from unauthorized access or tampering. To evaluate the effectiveness of our framework, we conduct experiments using an extensive dataset of IFTTT rules. The experimental results convincingly demonstrate that PFTAP outperforms state-of-the-art methods in terms of threat detection performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Robust privacy-preserving federated learning framework for IoT devices
    Han, Zhaoyang
    Zhou, Lu
    Ge, Chunpeng
    Li, Juan
    Liu, Zhe
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 9655 - 9673
  • [2] A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT
    Chen, Yange
    Liu, Lei
    Ping, Yuan
    Atiquzzaman, Mohammed
    Mumtaz, Shahid
    Zhang, Zhili
    Guizani, Mohsen
    Tian, Zhihong
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5843 - 5858
  • [3] An Efficient Federated Learning Framework for Privacy-Preserving Data Aggregation in IoT
    Shi, Rongquan
    Wei, Lifei
    Zhang, Lei
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 385 - 391
  • [4] Privacy-Preserving Defense: Intrusion Detection in IoT using Federated Learning
    Almeida, Leonardo
    Rodrigues, Pedro
    Teixeira, Rafael
    Antunes, Mario
    Aguiar, Rui L.
    2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024, 2024, : 908 - 913
  • [5] Privacy-Preserving Federated Learning for Intrusion Detection in IoT Environments: A Survey
    Vyas, Abhishek
    Lin, Po-Ching
    Hwang, Ren-Hung
    Tripathi, Meenakshi
    IEEE ACCESS, 2024, 12 : 127018 - 127050
  • [6] RPFL: A Reliable and Privacy-Preserving Framework for Federated Learning-Based IoT Malware Detection
    Asiri, Mohammed
    Khemakhem, Maher A.
    Alhebshi, Reemah M.
    Alsulami, Bassma S.
    Eassa, Fathy E.
    ELECTRONICS, 2025, 14 (06):
  • [7] Collaborative, Privacy-Preserving Federated Learning Framework for the Detection of Diabetic Eye Diseases
    Seema Gulati
    Kalpna Guleria
    Nitin Goyal
    SN Computer Science, 5 (8)
  • [8] Federated Learning for Privacy-Preserving Machine Learning in IoT Networks
    Anitha, G.
    Jegatheesan, A.
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 338 - 342
  • [9] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [10] Fedlabx: a practical and privacy-preserving framework for federated learning
    Yan, Yuping
    Kamel, Mohammed B. M.
    Zoltay, Marcell
    Gal, Marcell
    Hollos, Roland
    Jin, Yaochu
    Peter, Ligeti
    Tenyi, Akos
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 677 - 690