To address the limitations of existing graph contrastive learning methods, which fail to adaptively integrate feature and topological information and struggle to efficiently capture multi-hop information, we propose an adaptive multi-view parallel graph contrastive learning framework (AMPGCL). It is an unsupervised graph representation learning method designed to generate task-agnostic node embeddings. AMPGCL constructs and encodes feature and topological views to mine feature and global topological information. To encode global topological information, we introduce an H-Transformer to decouple multi-hop neighbor aggregations, capturing global topology from node subgraphs. AMPGCL learns embedding consistency among feature, topology, and original graph encodings through a multi-view contrastive loss, generating semantically rich embeddings while avoiding information redundancy. Experiments on nine real datasets demonstrate that AMPGCL consistently outperforms thirteen state-of-the-art graph representation learning models in classification accuracy, whether in homophilous or non-homophilous graphs.
机构:
Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Zhu, Yanqiao
Xu, Yichen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Xu, Yichen
Yu, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Alibaba Grp, Hangzhou, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Yu, Feng
Liu, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Liu, Qiang
Wu, Shu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Wu, Shu
Wang, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Wang, Liang
[J].
PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021),
2021,
: 2069
-
2080
机构:
Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Zhu, Yanqiao
Xu, Yichen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Xu, Yichen
Yu, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Alibaba Grp, Hangzhou, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Yu, Feng
Liu, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Liu, Qiang
Wu, Shu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Wu, Shu
Wang, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R ChinaChinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Beijing, Peoples R China
Wang, Liang
[J].
PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021),
2021,
: 2069
-
2080