Simulations of distributed-phase-reference quantum key distribution protocols

被引:1
作者
Abhignan, Venkat [1 ]
Jamunkar, Abhishek [1 ,2 ]
Nair, Gokul [1 ]
Mittal, Mohit [1 ]
Shrivastava, Megha [1 ]
机构
[1] Qdit Labs Pvt Ltd, Bengaluru 560092, India
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
关键词
quantum key distribution; simulation; quantum hacking; BREAKDOWN FLASH; ATTACK; SECURITY; CHANNEL;
D O I
10.1088/1402-4896/ad7ade
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum technology can enable secure communication for cryptography purposes using quantum key distribution. Quantum key distribution protocol establishes a secret key between two users with security guaranteed by the laws of quantum mechanics. To define the proper implementation of a quantum key distribution system using a particular cryptography protocol, it is crucial to critically and meticulously assess the device's performance due to technological limitations in the components used. We perform simulations on the ANSYS Interconnect platform to study the practical implementation of these devices using distributed-phase-reference protocols: differential-phase-shift and coherent-one-way quantum key distribution. Further, we briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections. The ideal simulations of these hacking attempts show how partial or complete secret key can be exposed to an eavesdropper, which can be mitigated by the implementation of discussed countermeasures.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Measurement-device-independenization of quantum key distribution protocols [J].
Shu, Hao .
CHINESE JOURNAL OF PHYSICS, 2023, 85 :135-142
[32]   Architecture and protocols of the future European quantum key distribution network [J].
Dianati, Mehrdad ;
Alleaume, Romain ;
Gagnaire, Maurice ;
Shen, Xuemin .
SECURITY AND COMMUNICATION NETWORKS, 2008, 1 (01) :57-74
[33]   New protocols for non-orthogonal quantum key distribution [J].
周媛媛 ;
周学军 ;
田培根 ;
王瑛剑 .
ChinesePhysicsB, 2013, 22 (01) :88-93
[34]   Reference-frame-independent quantum key distribution [J].
Laing, Anthony ;
Scarani, Valerio ;
Rarity, John G. ;
O'Brien, Jeremy L. .
PHYSICAL REVIEW A, 2010, 82 (01)
[35]   Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols [J].
Gao, Fei ;
Qin, Su-Juan ;
Guo, Fen-Zhuo ;
Wen, Qiao-Yan .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2011, 47 (05) :630-635
[36]   Double Blinding-Attack on Entanglement-Based Quantum Key Distribution Protocols [J].
Adenier, Guillaume ;
Ohya, Masanori ;
Watanabe, Noboru ;
Basieva, Irina ;
Khrennikov, Andrei Yu. .
FOUNDATIONS OF PROBABILITY AND PHYSICS - 6, 2012, 1424
[37]   Trojan horse attack free fault-tolerant quantum key distribution protocols [J].
Yang, Chun-Wei ;
Hwang, Tzonelih .
QUANTUM INFORMATION PROCESSING, 2014, 13 (03) :781-794
[38]   Implementation Security in Quantum Key Distribution [J].
Zapatero, Victor ;
Navarrete, lvaro ;
Curty, Marcos .
ADVANCED QUANTUM TECHNOLOGIES, 2025, 8 (02)
[39]   System analysis of Si-photonic receivers for differential phase shift quantum key distribution protocols [J].
Afifi, Abdelrahman E. ;
Young, Jeff F. ;
Shekhar, Sudip ;
Chrostowski, Lukas .
2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
[40]   Phase Noise in Real-World Twin-Field Quantum Key Distribution [J].
Bertaina, Gianluca ;
Clivati, Cecilia ;
Donadello, Simone ;
Liorni, Carlo ;
Meda, Alice ;
Virzi, Salvatore ;
Gramegna, Marco ;
Genovese, Marco ;
Levi, Filippo ;
Calonico, Davide ;
Dispenza, Massimiliano ;
Degiovanni, Ivo Pietro .
ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (06)