A two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning

被引:1
|
作者
Adraoui, Meriem [1 ]
Azmi, Rida [1 ]
Chenal, Jerome [1 ,2 ]
Diop, El Bachir [1 ]
Abdem, Seyid Abdellahi Ebnou [1 ]
Serbouti, Imane [1 ]
Hlal, Mohammed [1 ]
Bounabi, Mariem [1 ]
机构
[1] Mohammed VI Polytech Univ UM6P, Ctr Urban Syst CUS, Benguerir, Morocco
[2] Ecole Polytech Fed Lausanne EPFL, Urban & Reg Planning Community CEAT, CH-1015 Lausanne, Switzerland
关键词
Leakage detection; Leakage localization; Wavelet decomposition; Machine learning; Random forest; Water management; SIGNALS;
D O I
10.1016/j.cie.2024.110534
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Water is a crucial resource for all forms of life, yet it is becoming increasingly scarce. A significant portion of water loss in urban and industrial areas is attributed to leaks. Addressing this issue is critical for enhancing efficiency, sustainability, and resource conservation. This paper presents a novel two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning for depth analysis of pressure signals. The first phase, Leak Detection, utilizes wavelet analysis to extract significant features from the daily pressure signal data. These features are then inputted into a Random Forest classifier, achieving a classification accuracy of 99% for distinguishing between "Leak"and "No Leak"scenarios. Following the detection, the Leak Localization phase aims to pinpoint the leak's location using strategically placed sensors within the system. To facilitate understanding and application of our methodology, we have developed a user-friendly, web-based application designed for the detection and localization of water leaks on any given day. Extensive testing in a WDS named "L-Town"has validated our system's ability to accurately identify leaks. The combination of wavelet-based signal analysis and the Random Forest algorithm forms an effective framework for advanced leak detection in water distribution systems. This approach holds great promise for future research and practical implementations in water management.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Use of Machine Learning for Leak Detection and Localization in Water Distribution Systems
    Mashhadi, Neda
    Shahrour, Isam
    Attoue, Nivine
    El Khattabi, Jamal
    Aljer, Ammar
    SMART CITIES, 2021, 4 (04): : 1293 - 1315
  • [2] A modern approach for leak detection in water distribution systems
    Predescu, Alexandru
    Mocanu, Mariana
    Lupu, Ciprian
    2018 22ND INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2018, : 486 - 491
  • [3] An innovative machine learning based framework for water distribution network leakage detection and localization
    Fan, Xudong
    Yu, Xiong
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2022, 21 (04): : 1626 - 1644
  • [4] Attack detection in water distribution systems using machine learning
    Ramotsoela, Daniel T.
    Hancke, Gerhard P.
    Abu-Mahfouz, Adnan M.
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2019, 9
  • [5] Experiments based comparative evaluations of machine learning techniques for leak detection in water distribution systems
    Kammoun, Maryam
    Kammoun, Amina
    Abid, Mohamed
    WATER SUPPLY, 2022, 22 (01) : 628 - 642
  • [6] A Machine Learning approach to Intrusion Detection in Water Distribution Systems - A Review
    Mboweni, Ignitious, V
    Abu-Mahfouz, Adnan M.
    Ramotsoela, Daniel T.
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [7] Enhancing Automated Acoustic Leak Detection in a Water Distribution Network Using Ensemble Machine Learning
    Boadu, Vincent
    El-Zahab, Samer
    Zayed, Tarek
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2025, 151 (03)
  • [8] Leak detection in water distribution networks using deep learning
    Punukollu H.
    Vasan A.
    Srinivasa Raju K.
    ISH Journal of Hydraulic Engineering, 2023, 29 (05): : 674 - 682
  • [9] Evaluating water pipe leak detection and localization with various machine learning and deep learning models
    Pandian, C.
    Alphonse, P. J. A.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2025,
  • [10] A MACHINE LEARNING APPROACH FOR CLASSIFYING FAULTS IN MICROGRIDS USING WAVELET DECOMPOSITION
    Khalaf, Aya
    Al Hassan, Hashim A.
    Emes, Adam
    Akcakaya, Murat
    Grainger, Brandon M.
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,