Modulating the Li-Ion Transport Pathway of Succinonitrile-Based Plastic Crystalline Electrolytes for Solid-State Lithium Metal Batteries

被引:4
|
作者
Ye, Xue [1 ,2 ]
Fu, Han [1 ]
Zhang, Yixiao [1 ]
Wu, Dazhuan [2 ]
Zhong, Yu [2 ]
Wang, Xiuli [1 ]
Ouyang, Xiaoping [2 ]
Tu, Jiangping [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Inst Proc Equipment, Coll Energy Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
cross-linked polymer; interface stability; Li-ion transport; Solid-state lithium metal battery; POLYMER ELECTROLYTE;
D O I
10.1002/adfm.202413205
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Succinonitrile (SCN) based plastic crystal electrolytes (SPCEs) have attracted much attention for lithium metal batteries due to their considerable ionic conductivity and thermal stability. Insufficient mechanical properties, weak reductive stability, and the presence of free SCN molecules can result in adverse interfacial reactions. Polymer introduction has been explored to address these challenges. However, the introduction of polymer affects the SCN state, leading to reduced ionic conductivity, potentially due to limited segmental motion of the polymer at room temperature. Herein, a cross-linked network polymer strategy is proposed to modify the Li-ion transport pathway in SPCE, aiming to significantly improve the ionic conductivity. The strong interaction between the polymer matrix and SCN enhances their mutual solubility, reduces the crystallinity of SCN, and forms a rapid conduction pathway (polymer-[SCN-Li+]). The ionic conductivity of SPCE increases to 1.28 mS cm-1, with the Li-ion migration number (tLi+ ) also rising to 0.7. Electrochemical performances in Li symmetrical, Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 cells show significant improvement at both room temperature and 0 degrees C. These findings suggest that designing polymer network structures in SPCEs holds promise for solid-state lithium metal battery applications. A cross-linked network polymer strategy is proposed to modify the Li-ion transport pathway in Succinonitrile (SCN) based plastic crystal electrolytes, aiming to significantly improve the ionic conductivity. The strong interaction between the polymer matrix and SCN can anchor and regulate SCN molecules and form a fast conduction pathway (polymer-[SCN-Li+]), thereby significantly improving the electrochemical performance of the electrolyte. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries
    Liu, Kai
    Zhang, Qingqing
    Thapaliya, Bishnu P.
    Sun, Xiao-Guang
    Ding, Fei
    Liu, Xingjiang
    Zhang, Jinli
    Dai, Sheng
    SOLID STATE IONICS, 2020, 345
  • [2] Photo-Thermal Mediated Li-ion Transport for Solid-State Lithium Metal Batteries
    Wang, Qin
    Sun, Qi
    Pu, Yulai
    Sun, Wenbo
    Lin, Chengjiang
    Duan, Xiaozheng
    Ren, Xiaoyan
    Lu, Lehui
    SMALL, 2024, 20 (22)
  • [3] Composite Cathodes with Succinonitrile-Based Ionic Conductors for Long-Cycle-Life Solid-State Lithium Metal Batteries
    Xin, Chengzhou
    Wen, Kaihua
    Xue, Chuanjiao
    Wang, Shuo
    Liang, Ying
    Wu, Xinbin
    Li, Liangliang
    Nan, Ce-Wen
    BATTERIES & SUPERCAPS, 2022, 5 (01)
  • [4] Succinonitrile-based solid-state electrolytes for dye-sensitised solar cells
    Byrne, Owen
    Coughlan, Aoife
    Surolia, Praveen K.
    Thampi, K. Ravindranathan
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (04): : 417 - 427
  • [5] Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries
    Chen, Luyi
    Ding, Kui
    Li, Kang
    Li, Zhongliang
    Zhang, Xueliang
    Zheng, Qifeng
    Cai, Yue-Peng
    Lan, Ya-Qian
    ENERGYCHEM, 2022, 4 (03)
  • [6] Solid-State NMR Revealing the Impact of Polymer Additives on Li- Ion Motions in Plastic-Crystalline Succinonitrile Electrolytes
    Moeller, Julia
    van Laack, Vanessa
    Koschek, Katharina
    Bottke, Patrick
    Wark, Michael
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (03): : 1464 - 1474
  • [7] Succinonitrile-Polymer Composite Electrolytes for Li-Ion Solid-State Batteries?The Influence of Polymer Additives on Thermomechanical and Electrochemical Properties
    van Laack, Vanessa
    Langer, Frederieke
    Hartwig, Andreas
    Koschek, Katharina
    ACS OMEGA, 2023, 8 (10): : 9058 - 9066
  • [8] The chemistry of halide-based solid electrolytes: unlocking advances in solid-state Li-ion batteries
    Molaiyan, Palanivel
    Jin, Tingwu
    Wang, Shuo
    dos Reis, Glaydson Simoes
    Petnikota, Shaikshavali
    Lassi, Ulla
    Paolella, Andrea
    CHEMICAL COMMUNICATIONS, 2025, 61 (14) : 2846 - 2857
  • [9] A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries
    Genrui Qiu
    Yapeng Shi
    Bolong Huang
    Nano Research, 2022, 15 : 5153 - 5160
  • [10] A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries
    Qiu, Genrui
    Shi, Yapeng
    Huang, Bolong
    NANO RESEARCH, 2022, 15 (06) : 5153 - 5160