Controlling low temperature sintering of UO2+x

被引:1
作者
Frost, Dillon G. [1 ,2 ]
Burr, Patrick A. [1 ]
Obbard, Edward G. [1 ]
Veliscek-Carolan, Jessica [2 ]
机构
[1] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[2] ANSTO, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia
关键词
(U; Zr)O2; Urania; Zirconia; Sintering; Nuclear fuel; QUANTITATIVE PHASE-ANALYSIS; FISSION-GAS RELEASE; GRAIN-SIZE; PELLETS; FUEL; DENSIFICATION; BEHAVIOR; OXIDES; TIO2; U3O8;
D O I
10.1016/j.jnucmat.2024.155269
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
UO2 nuclear fuel pellets are typically sintered at temperatures of approximately 1700 degrees C to achieve the high densities and large grain sizes necessary for safe reactor operation. Lowering this sintering temperature is desirable in order to decrease the energy input required for fuel manufacture. Hence, the effect of temperature, time, stoichiometry and ZrO2 doping on sintering efficacy have been investigated. ZrO2 doping, coupled with hyper-stochiometry, acted as a strong sintering aid, enabling higher densities and larger grain sizes when sintering at lower temperatures and for shorter periods compared to the undoped samples. Without ZrO2 doping, at 1500 degrees C sintering was strongly sensitive to hyper-stoichiometry and only weakly sensitive to sintering duration. Addition of 0.13 mol fraction ZrO2 increased theoretical density up to 10 % and the maximum grain size from 8 mu m to 40 mu m. Addition of 0.30 mol fraction ZrO2 resulted in even greater densification, reaching 98 % of maximum theoretical density, but also formation of a secondary phase that hindered grain growth.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Grand potential sintering simulations of doped UO2 accident-tolerant fuel concepts
    Greenquist, Ian
    Tonks, Michael
    Cooper, Michael
    Andersson, David
    Zhang, Yongfeng
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2020, 532 (532)
  • [42] Influence of sintering conditions on low-temperature degradation of dental zirconia
    Inokoshi, Masanao
    Zhang, Fei
    De Munck, Jan
    Minakuchi, Shunsuke
    Naert, Ignace
    Vleugels, Jozef
    Van Meerbeek, Bart
    Vanmeensel, Kim
    [J]. DENTAL MATERIALS, 2014, 30 (06) : 669 - 678
  • [43] Influence of the oxygen potential on the sintering of UO2-45% PuO2
    Noyau, S.
    Audubert, F.
    Martin, P. M.
    Maitre, A.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (13) : 3651 - 3663
  • [44] Exothermic low temperature sintering of Cu nanoparticles
    Mittal, Jagjiwan
    Lin, Kwang-Lung
    [J]. MATERIALS CHARACTERIZATION, 2015, 109 : 19 - 24
  • [45] Densification of porous tungsten by low temperature sintering
    Selcuk, C
    Morley, N
    Wood, JV
    [J]. POWDER METALLURGY, 2005, 48 (03) : 245 - 248
  • [46] Diffusion of oxygen interstitials in UO2+x using kinetic Monte Carlo simulations: Role of O/M ratio and sensitivity analysis
    Behera, Rakesh K.
    Watanabe, Taku
    Andersson, David A.
    Uberuaga, Blas P.
    Deo, Chaitanya S.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2016, 472 : 89 - 98
  • [47] Sintering of UO2 Microsphere and Its Performance
    Ma Jingtao
    Zhao Xingyu
    Hao Shaochang
    Wang Yang
    Deng Changsheng
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2013, 42 : 444 - 446
  • [48] A simple approach to porous low-temperature-sintering BaTiO3
    Li Yang
    Liu Hu
    Liu FaJia
    Li ChaoRong
    Chen BenYong
    Dong WenJun
    [J]. SCIENCE CHINA-CHEMISTRY, 2012, 55 (09) : 1765 - 1769
  • [49] Low temperature sintering and properties of CaO-B2O3-SiO2 system glass ceramics for LTCC applications
    Zhu, Haikui
    Zhou, Hongqing
    Liu, Min
    Wei, Pengfei
    Ning, Ge
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 482 (1-2) : 272 - 275
  • [50] Low-temperature sintering of sodium beta alumina ceramics using nanosized SnO2 sintering aid
    Moghadam, Hajar Ahmadi
    Paydar, Mohammad Hossein
    [J]. PROCESSING AND APPLICATION OF CERAMICS, 2020, 14 (01) : 56 - 62