Regulatory roles of extracellular polymeric substances in uranium reduction via extracellular electron transfer by Desulfovibrio vulgaris UR1

被引:2
|
作者
Xu, Guangming [1 ]
Yang, Haotian [1 ]
Han, Juncheng [1 ]
Liu, Xinyao [1 ]
Shao, Kexin [1 ]
Li, Xindai [1 ]
Wang, Guanying [1 ,2 ]
Yue, Weifeng [1 ]
Dou, Junfeng [1 ]
机构
[1] Beijing Normal Univ, Minist Educ Groundwater Pollut Control & Remediat, Coll Water Sci, Engn Res Ctr, Beijing 100875, Peoples R China
[2] Beijing Boqi Elect Power Sci & Technol Co Ltd, Beijing 100012, Peoples R China
关键词
Extracellular polymetric substance; Electrical transfer; Uranium reduction; Uraninite; Redox active protein; MICROBIAL REDUCTION; U(VI); IRON; NANOPARTICLES; REOXIDATION; BIOFILMS; VI;
D O I
10.1016/j.envres.2024.119862
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The pathway of reducing U(VI) to insoluble U(IV) using electroactive bacteria has become an effective and promising approach to address uranium-contaminated water caused by human activities. However, knowledge regarding the roles of extracellular polymeric substances (EPS) in the uranium reduction process involving in extracellular electron transfer (EET) mechanisms is limited. Here, this study isolated a novel U(VI)-reducing strain, Desulfovibrio vulgaris UR1, with a high uranium removal capacity of 2.75 mM/(g dry cell). Based on a reliable EPS extraction method (45 degrees C heating), manipulation of EPS in D. vulgaris UR1 suspensions (removal or addition of EPS) highlighted its critical role in facilitating uranium reduction efficiency. On the second day, U(VI) removal rates varied significantly across systems with different EPS contents: 60.8% in the EPS-added system, 48.5% in the pristine system, and 22.2% in the EPS-removed system. Characterization of biogenic solids confirmed the reduction of U(VI) by D. vulgaris UR1, and the main products were uraninite and UO2 (2.88-4.32 nm in diameter). As EPS formed a permeable barrier, these nanoparticles were primarily immobilized within the EPS in EPS-retained/EPS-added cells, and within the periplasm in EPS-removed cells. Multiple electroactive substances, such as tyrosine/tryptophan aromatic compounds, flavins, and quinone-like substances, were identified in EPS, which might be the reason for enhancement of uranium reduction via providing more electron shuttles. Furthermore, proteomics revealed that a large number of proteins in EPS were enriched in the subcategories of catalytic activity and electron transfer activity. Among these, iron-sulfur proteins, such as hydroxylamine reductase (P31101), pyruvate: ferredoxin oxidoreductase (A0A0H3A501), and sulfite reductase (P45574), played the most critical role in regulating EET in D. vulgaris UR1. This work highlighted the importance of EPS in the uranium reduction by D. vulgaris UR1, indicating that EPS functioned as both a reducing agent and a permeation barrier for access to heavy metal uranium.
引用
收藏
页数:15
相关论文
共 13 条
  • [11] Performance and mechanism of anaerobic granular sludge enhancing uranium immobilization via extracellular polymeric substances in column reactors and batch experiments
    Zhao, Changsong
    Wang, Yongpeng
    Cheng, Mengxi
    Zhang, Hailing
    Yang, Yuanyou
    Liu, Ning
    Liao, Jiali
    JOURNAL OF CLEANER PRODUCTION, 2022, 363
  • [12] Direct extracellular electron transfer to an indium tin doped oxide electrode via heme redox reactions in Desulfovibrio ferrophilus IS5
    Deng, Xiao
    Okamoto, Akihiro
    ELECTROCHIMICA ACTA, 2023, 453
  • [13] Enhancing the extracellular electron transfer ability via Polydopamine@S. oneidensis MR-1 for Cr(VI) reduction
    Jia, Boyu
    Liu, Tianbao
    Wan, Juanjuan
    Ivanets, Andrei
    Xiang, Yujia
    Zhang, Lijuan
    Su, Xintai
    ENVIRONMENTAL RESEARCH, 2023, 217