Injection Locked Low Noise Chip-Based Silica Soliton Microwave Oscillator

被引:0
作者
Wei, Ziqi [1 ]
Cai, Zhaoyu [1 ]
Suk, Daewon [2 ]
Yang, Changxi [1 ]
Lee, Hansuek [2 ]
Bao, Chengying [1 ]
机构
[1] Tsinghua Univ, Dept Precis Instruments, State Key Lab Precis Measurement Technol & Instrum, Beijing 100084, Peoples R China
[2] Korea Adv Inst Sci & Technol KAIST, Dept Phys, Daejeon 34141, South Korea
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Phase noise; Noise; Microwave oscillators; Silicon compounds; Microcavities; Microwave amplifiers; Microwave photonics; Optical frequency combs; microresonators; solitons; phase noise; CHERENKOV RADIATION; TEMPORAL SOLITONS; FREQUENCY COMB; HIGH-POWER; GENERATION; JITTER; RESONATORS;
D O I
10.1109/JSTQE.2024.3423774
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microsonator-based photonic microwave oscillators can deliver ultralow phase noise with a compact form factor and a low power consumption. Here, we report on a low noise microwave oscillator at 10 GHz using a chip-based silica wedge soliton microcomb. By operating in a quiet point, the phase noise at the offset frequency of 100 kHz (10 kHz) can reach -143 dBc/Hz (-132 dBc/Hz). By measuring the phase noise under different amplified microcomb powers, we find that the phase noise at the offset frequencies above 1 MHz are limited by the photodetector, instead of shot noise. The phase noise for low offset frequencies is suppressed by injection locking to a high quality commercial electric oscillator. When locked, the soliton microcomb oscillator can purify the electric oscillator more than 10 dB at the offset frequency of hundreds of kHz. Different from previous results in a MgF(2 )microcavity, no deterioration of the phase noise at high offset frequencies due to injection locking is observed. The injection locking is relatively loose for the silica mcirocomb operating in the quiet point, with phase noise reduction only observed below an offset frequency of kHz. Our measurements show how the injection locking impacts the low noise silica soliton oscillators.
引用
收藏
页数:8
相关论文
共 63 条
  • [1] CHERENKOV RADIATION EMITTED BY SOLITONS IN OPTICAL FIBERS
    AKHMEDIEV, N
    KARLSSON, M
    [J]. PHYSICAL REVIEW A, 1995, 51 (03): : 2602 - 2607
  • [2] Brillouin-Kerr Soliton Frequency Combs in an Optical Microresonator
    Bai, Yan
    Zhang, Menghua
    Shi, Qi
    Ding, Shulin
    Qin, Yingchun
    Xie, Zhenda
    Jiang, Xiaoshun
    Xiao, Min
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (06)
  • [3] Quantum diffusion of microcavity solitons
    Bao, Chengying
    Suh, Myoung-Gyun
    Shen, Boqiang
    Safak, Kemal
    Dai, Anan
    Wang, Heming
    Wu, Lue
    Yuan, Zhiquan
    Yang, Qi-Fan
    Matsko, Andrey B.
    Kaertner, Franz X.
    Vahala, Kerry J.
    [J]. NATURE PHYSICS, 2021, 17 (04) : 462 - +
  • [4] Spatial mode-interaction induced single soliton generation in microresonators
    Bao, Chengying
    Xuan, Yi
    Leaird, Daniel E.
    Wabnitz, Stefan
    Qi, Minghao
    Weiner, Andrew M.
    [J]. OPTICA, 2017, 4 (09): : 1011 - 1015
  • [5] Soliton repetition rate in a silicon-nitride microresonator
    Bao, Chengying
    Xuan, Yi
    Wang, Cong
    Jaramillo-Villegas, Jose A.
    Leaird, Daniel E.
    Qi, Minghao
    Weiner, Andrew M.
    [J]. OPTICS LETTERS, 2017, 42 (04) : 759 - 762
  • [6] High-power, high-linearity photodiodes
    Beling, Andreas
    Xie, Xiaojun
    Campbell, Joe C.
    [J]. OPTICA, 2016, 3 (03): : 328 - 338
  • [7] Benedick AJ, 2012, NAT PHOTONICS, V6, P97, DOI [10.1038/NPHOTON.2011.326, 10.1038/nphoton.2011.326]
  • [8] Integrated optical frequency comb technologies
    Chang, Lin
    Liu, Songtao
    Bowers, John E.
    [J]. NATURE PHOTONICS, 2022, 16 (02) : 95 - 108
  • [9] Ultra-low time jitter transform-limited dissipative Kerr soliton microcomb
    Cui, Wenwen
    Liu, Xin
    Zhou, Heng
    Wang, Wenting
    Qiu, Kun
    Geng, Yong
    [J]. OPTICS EXPRESS, 2023, 31 (22) : 37154 - 37161
  • [10] Optical frequency combs: Coherently uniting the electromagnetic spectrum
    Diddams, Scott A.
    Vahala, Kerry
    Udem, Thomas
    [J]. SCIENCE, 2020, 369 (6501) : 267 - +