Domination number of Cartesian product through space projections

被引:0
|
作者
Tout, Omar [1 ]
机构
[1] Sultan Qaboos Univ, Coll Sci, Dept Math, POB 36, Al Khoud 123, Oman
关键词
Cartesian product; domination number; Vizing's conjecture; Clark-Suen bound;
D O I
10.47443/dml.2024.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1968, Vizing conjectured that for every pair of graphs X and Y, the inequality gamma(X square Y) > gamma(X)gamma(Y) holds, where gamma stands for the domination number and X square Y is the Cartesian product of X and Y. In a breakthrough result, Clark and Suen [Electron. J. Combin. 7 (2000) #N4] proved that gamma(X square Y) > 1/2 gamma(X)gamma(Y). In this paper, a lower bound for gamma(X square Y square Z) is obtained using projections in the space. It is shown how the obtained bound implies the mentioned result of Clark and Suen.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 50 条
  • [21] THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) : 19 - 30
  • [22] Certain domination numbers for Cartesian product of graphs
    Arulanand, S.
    Rajan, R. Sundara
    Prabhu, S.
    Stephen, Sudeep
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03) : 1045 - 1058
  • [23] Convex domination in the composition and cartesian product of graphs
    Labendia, Mhelmar A.
    Canoy, Sergio R., Jr.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (04) : 1003 - 1009
  • [24] GLOBAL EQUITABLE DOMINATION IN CARTESIAN PRODUCT OF GRAPHS
    Vaidya, S. K.
    Pandit, R. M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (05): : 341 - 356
  • [25] Rainbow Domination in Cartesian Product of Paths and Cycles
    Gao, Hong
    Zhang, Yunlei
    Wang, Yuqi
    Guo, Yuanyuan
    Liu, Xing
    Liu, Renbang
    Xi, Changqing
    Yang, Yuansheng
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (08) : 907 - 928
  • [26] Convex domination in the composition and cartesian product of graphs
    Mhelmar A. Labendia
    Sergio R. Canoy
    Czechoslovak Mathematical Journal, 2012, 62 : 1003 - 1009
  • [27] ROMAN DOMINATION IN CARTESIAN PRODUCT GRAPHS AND STRONG PRODUCT GRAPHS
    Gonzalez Yero, Ismael
    Alberto Rodriguez-Velazquez, Juan
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 262 - 274
  • [28] On the total {k}-domination number of Cartesian products of graphs
    Li, Ning
    Hou, Xinmin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (02) : 173 - 178
  • [29] Non split hop domination number for some mirror graphs and cartesian product of two distinct paths
    Mahadevan, G.
    Vijayalakshmi, V.
    Avadayappan, Selvam
    JOURNAL OF ANALYSIS, 2019, 27 (02) : 475 - 491
  • [30] On the total {k}-domination number of Cartesian products of graphs
    Ning Li
    Xinmin Hou
    Journal of Combinatorial Optimization, 2009, 18 : 173 - 178