Hypergraph-Based Influence Maximization in Online Social Networks

被引:1
|
作者
Zhang, Chuangchuang [1 ]
Cheng, Wenlin [2 ]
Li, Fuliang [2 ]
Wang, Xingwei [2 ]
机构
[1] Ludong Univ, Sch Informat & Elect Engn, Yantai 264025, Peoples R China
[2] Northeastern Univ, Coll Comp Sci & Engn, Shenyang 110169, Peoples R China
基金
中国国家自然科学基金;
关键词
influence maximization; hypergraph; random walk; Monte Carlo;
D O I
10.3390/math12172769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Influence maximization in online social networks is used to select a set of influential seed nodes to maximize the influence spread under a given diffusion model. However, most existing proposals have huge computational costs and only consider the dyadic influence relationship between two nodes, ignoring the higher-order influence relationships among multiple nodes. It limits the applicability and accuracy of existing influence diffusion models in real complex online social networks. To this end, in this paper, we present a novel information diffusion model by introducing hypergraph theory to determine the most influential nodes by jointly considering adjacent influence and higher-order influence relationships to improve diffusion efficiency. We mathematically formulate the influence maximization problem under higher-order influence relationships in online social networks. We further propose a hypergraph sampling greedy algorithm (HSGA) to effectively select the most influential seed nodes. In the HSGA, a random walk-based influence diffusion method and a Monte Carlo-based influence approximation method are devised to achieve fast approximation and calculation of node influences. We conduct simulation experiments on six real datasets for performance evaluations. Simulation results demonstrate the effectiveness and efficiency of the HSGA, and the HSGA has a lower computational cost and higher seed selection accuracy than comparison mechanisms.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Information Propagation in Hypergraph-Based Social Networks
    Xiao, Hai-Bing
    Hu, Feng
    Li, Peng-Yue
    Song, Yu-Rong
    Zhang, Zi-Ke
    ENTROPY, 2024, 26 (11)
  • [2] Influence Maximization Based on Backward Reasoning in Online Social Networks
    Zhang, Lin
    Li, Kan
    MATHEMATICS, 2021, 9 (24)
  • [3] Exploring Online Social Networks for Influence Maximization
    Yellakuor, Baagyere Edward
    Qin Zhen
    Xiong Hu
    Qin Zhiguang
    2015 INTERNATIONAL CONFERENCE AND WORKSHOP ON COMPUTING AND COMMUNICATION (IEMCON), 2015,
  • [4] Influence Maximization Based on Snapshot Prediction in Dynamic Online Social Networks
    Zhang, Lin
    Li, Kan
    MATHEMATICS, 2022, 10 (08)
  • [5] Topic based time-sensitive influence maximization in online social networks
    Huiyu Min
    Jiuxin Cao
    Tangfei Yuan
    Bo Liu
    World Wide Web, 2020, 23 : 1831 - 1859
  • [6] Topic based time-sensitive influence maximization in online social networks
    Min, Huiyu
    Cao, Jiuxin
    Yuan, Tangfei
    Liu, Bo
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (03): : 1831 - 1859
  • [7] A Hypergraph-Based Reranking Model for Retrieving Diverse Social Images
    Bouhlel, Noura
    Feki, Ghada
    Ben Ammar, Anis
    Ben Amar, Chokri
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 2017, 10424 : 279 - 291
  • [8] Hypergraph-based image representation
    Bretto, A
    Gillibert, L
    GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS, 2005, 3434 : 1 - 11
  • [9] Cost-efficient Influence Maximization in Online Social Networks
    Zhou, Jingya
    Fan, Jianxi
    Wang, Jin
    Wang, Xi
    Cheng, Baolei
    2017 FIFTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2017, : 232 - 237
  • [10] Conformity-aware influence maximization in online social networks
    Li, Hui
    Bhowmick, Sourav S.
    Sun, Aixin
    Cui, Jiangtao
    VLDB JOURNAL, 2015, 24 (01) : 117 - 141