Engineering probiotic Escherichia coli Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system

被引:3
作者
Fang, Mengdie [1 ,2 ]
Zhang, Ruiting [1 ]
Wang, Chenyu [1 ]
Liu, Zhizhi [1 ]
Fei, Mingyue [1 ]
Tang, Biao [3 ,4 ]
Yang, Hua [3 ]
Sun, Dongchang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Biotechnol & Bioengn, Hangzhou, Zhejiang, Peoples R China
[2] Hangzhou Med Coll, Sch Lab Med & Bioengn, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Acad Agr Sci, Inst Agroprod Safety & Nutr, State Key Lab Managing Biot & Chem Threats Qual &, Hangzhou, Zhejiang, Peoples R China
[4] Univ Chinese Acad Sci, Key Lab Syst Hlth Sci Zhejiang Prov, Sch Life Sci, Hangzhou Inst Adv Study, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
antibiotic resistance gene; probiotics; <hr />Escherichia coli Nissle 1917; conjugation; CRISPR-Cas; PLASMID TRANSFER; RNA; CELLS; DNA; INTERFERENCE; DEGRADATION; CONJUGATION; RECOGNITION; MECHANISM; IMMUNITY;
D O I
10.1128/aem.00811-24
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Many multidrug-resistant (MDR) bacteria have evolved through the accumulation of antibiotic resistance genes (ARGs). Although the potential risk of probiotics as reservoirs of ARGs has been recognized, strategies for blocking the transfer of ARGs while using probiotics have rarely been explored. The probiotic Escherichia coli Nissle 1917 (EcN) has long been used for treating intestinal diseases. Here, we demonstrate frequent transfer of ARGs into EcN both in vitro and in vivo, raising concerns about its potential risk of accumulating antibiotic resistance. Given that no CRISPR-Cas system was found in natural EcN, we integrated the type I-E CRISPR-Cas3 system derived from E. coli BW25113 into EcN. The engineered EcN was able to efficiently cleave multiple ARGs [i.e., mcr-1, bla(NDM-1), and tet(X)] encoding enzymes for degrading last-resort antibiotics. Through co-incubation of EcN expressing Cas3-Cascade and that expressing Cas9, we showed that the growth of the former strain outcompeted the latter strain, demonstrating a better clinical application prospect of EcN expressing the type I-E CRISPR-Cas3 system. In the intestine of a model animal (i.e., zebrafish), the engineered EcN exhibited immunity against the transfer of CRISPR-targeted ARGs. Our work equips EcN with immunity against the transfer of multiple ARGs by exploiting the exogenous type I-E CRISPR-Cas3 system, thereby reducing the risk of the spread of ARGs while using it as a probiotic chassis for generating living therapeutics.
引用
收藏
页数:18
相关论文
共 92 条
  • [81] An engineered probiotic secreting Sj16 ameliorates colitis via Ruminococcaceae/butyrate/retinoic acid axis
    Wang, Lifu
    Liao, Yao
    Yang, Ruibing
    Zhu, Zifeng
    Zhang, Lichao
    Wu, Zhongdao
    Sun, Xi
    [J]. BIOENGINEERING & TRANSLATIONAL MEDICINE, 2021, 6 (03)
  • [82] Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas
    Wang, Pengxia
    Yu, Zichao
    Li, Baiyuan
    Cai, Xingsheng
    Zeng, Zhenshun
    Chen, Xiulan
    Wang, Xiaoxue
    [J]. MICROBIAL CELL FACTORIES, 2015, 14
  • [83] CRISPR Immunity Relies on the Consecutive Binding and Degradation of Negatively Supercoiled Invader DNA by Cascade and Cas3
    Westra, Edze R.
    van Erp, Paul B. G.
    Kunne, Tim
    Wong, Shi Pey
    Staals, Raymond H. J.
    Seegers, Christel L. C.
    Bollen, Sander
    Jore, Matthijs M.
    Semenova, Ekaterina
    Severinov, Konstantin
    de Vos, Willem M.
    Dame, Remus T.
    de Vries, Renko
    Brouns, Stan J. J.
    van der Oost, John
    [J]. MOLECULAR CELL, 2012, 46 (05) : 595 - 605
  • [84] H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO
    Westra, Edze R.
    Pul, Uemit
    Heidrich, Nadja
    Jore, Matthijs M.
    Lundgren, Magnus
    Stratmann, Thomas
    Wurm, Reinhild
    Raine, Amanda
    Mescher, Melina
    van Heereveld, Luc
    Mastop, Marieke
    Wagner, E. Gerhart H.
    Schnetz, Karin
    van der Oost, John
    Wagner, Rolf
    Brouns, Stan J. J.
    [J]. MOLECULAR MICROBIOLOGY, 2010, 77 (06) : 1380 - 1393
  • [85] A Transgenic Probiotic Secreting a Parasite Immunomodulator for Site-Directed Treatment of Gut Inflammation
    Whelan, Rose A.
    Rausch, Sebastian
    Ebner, Friederike
    Guenzel, Dorothee
    Richter, Jan F.
    Hering, Nina A.
    Schulzke, Joerg-Dieter
    Kuehl, Anja A.
    Keles, Ahmed
    Janczyk, Pawel
    Noeckler, Karsten
    Wieler, Lothar H.
    Hartmann, Susanne
    [J]. MOLECULAR THERAPY, 2014, 22 (10) : 1730 - 1740
  • [86] Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing
    Wu, Zong-Yen
    Huang, Yao-Ting
    Chao, Wen-Cheng
    Ho, Shu-Peng
    Cheng, Jan-Fang
    Liu, Po-Yu
    [J]. JOURNAL OF ADVANCED RESEARCH, 2019, 18 : 61 - 69
  • [87] Construction of a sustainable 3-hydroxybutyrate-producing probiotic Escherichia coli for treatment of colitis
    Yan, Xu
    Liu, Xin-Yi
    Zhang, Dian
    Zhang, Yu-Dian
    Li, Zi-Hua
    Liu, Xu
    Wu, Fuqing
    Chen, Guo-Qiang
    [J]. CELLULAR & MOLECULAR IMMUNOLOGY, 2021, 18 (10) : 2344 - 2357
  • [88] Escherichia coli Cas1/2 Endonuclease Complex Modifies Self-Targeting CRISPR/Cascade Spacers Reducing Silencing Guide Stability
    Ye, Zhixia
    Moreb, Eirik A.
    Li, Shuai
    Lebeau, Juliana
    Menacho-Melgar, Romel
    Munson, Matthew
    Lynch, Michael D.
    [J]. ACS SYNTHETIC BIOLOGY, 2021, 10 (01): : 29 - 37
  • [89] Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria
    Yosef, Ido
    Manor, Miriam
    Kiro, Ruth
    Qimron, Udi
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) : 7267 - 7272
  • [90] Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications
    Yu, Mingjing
    Hu, Shilong
    Tang, Biao
    Yang, Hua
    Sun, Dongchang
    [J]. BIOTECHNOLOGY ADVANCES, 2023, 67