Engineering probiotic Escherichia coli Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system

被引:3
作者
Fang, Mengdie [1 ,2 ]
Zhang, Ruiting [1 ]
Wang, Chenyu [1 ]
Liu, Zhizhi [1 ]
Fei, Mingyue [1 ]
Tang, Biao [3 ,4 ]
Yang, Hua [3 ]
Sun, Dongchang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Biotechnol & Bioengn, Hangzhou, Zhejiang, Peoples R China
[2] Hangzhou Med Coll, Sch Lab Med & Bioengn, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Acad Agr Sci, Inst Agroprod Safety & Nutr, State Key Lab Managing Biot & Chem Threats Qual &, Hangzhou, Zhejiang, Peoples R China
[4] Univ Chinese Acad Sci, Key Lab Syst Hlth Sci Zhejiang Prov, Sch Life Sci, Hangzhou Inst Adv Study, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
antibiotic resistance gene; probiotics; <hr />Escherichia coli Nissle 1917; conjugation; CRISPR-Cas; PLASMID TRANSFER; RNA; CELLS; DNA; INTERFERENCE; DEGRADATION; CONJUGATION; RECOGNITION; MECHANISM; IMMUNITY;
D O I
10.1128/aem.00811-24
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Many multidrug-resistant (MDR) bacteria have evolved through the accumulation of antibiotic resistance genes (ARGs). Although the potential risk of probiotics as reservoirs of ARGs has been recognized, strategies for blocking the transfer of ARGs while using probiotics have rarely been explored. The probiotic Escherichia coli Nissle 1917 (EcN) has long been used for treating intestinal diseases. Here, we demonstrate frequent transfer of ARGs into EcN both in vitro and in vivo, raising concerns about its potential risk of accumulating antibiotic resistance. Given that no CRISPR-Cas system was found in natural EcN, we integrated the type I-E CRISPR-Cas3 system derived from E. coli BW25113 into EcN. The engineered EcN was able to efficiently cleave multiple ARGs [i.e., mcr-1, bla(NDM-1), and tet(X)] encoding enzymes for degrading last-resort antibiotics. Through co-incubation of EcN expressing Cas3-Cascade and that expressing Cas9, we showed that the growth of the former strain outcompeted the latter strain, demonstrating a better clinical application prospect of EcN expressing the type I-E CRISPR-Cas3 system. In the intestine of a model animal (i.e., zebrafish), the engineered EcN exhibited immunity against the transfer of CRISPR-targeted ARGs. Our work equips EcN with immunity against the transfer of multiple ARGs by exploiting the exogenous type I-E CRISPR-Cas3 system, thereby reducing the risk of the spread of ARGs while using it as a probiotic chassis for generating living therapeutics.
引用
收藏
页数:18
相关论文
共 92 条
  • [1] Large deletions induced by Cas9 cleavage
    Adikusuma, Fatwa
    Piltz, Sandra
    Corbett, Mark A.
    Turvey, Michelle
    McColl, Shaun R.
    Helbig, Karla J.
    Beard, Michael R.
    Hughes, James
    Pomerantz, Richard T.
    Thomas, Paul Q.
    [J]. NATURE, 2018, 560 (7717) : E8 - E9
  • [2] Anti-cancer properties of Escherichia coil Nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways
    Alizadeh, Siamak
    Esmaeili, Abolghasem
    Omidi, Yadollah
    [J]. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2020, 23 (07) : 886 - 893
  • [3] Extracellular vesicles and soluble factors secreted by Escherichia coli Nissle 1917 and ECOR63 protect against enteropathogenic E. coli-induced intestinal epithelial barrier dysfunction
    Alvarez, Carina-Shianya
    Gimenez, Rosa
    Canas, Maria-Alexandra
    Vera, Rodrigo
    Diaz-Garrido, Natalia
    Badia, Josefa
    Baldoma, Laura
    [J]. BMC MICROBIOLOGY, 2019, 19 (1)
  • [4] TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening
    Alvarez, Miguel M.
    Biayna, Josep
    Supek, Fran
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae:: Involvement of the Tra2 mating system
    Bates, S
    Cashmore, AM
    Wilkins, BM
    [J]. JOURNAL OF BACTERIOLOGY, 1998, 180 (24) : 6538 - 6543
  • [6] Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
    Bikard, David
    Euler, Chad W.
    Jiang, Wenyan
    Nussenzweig, Philip M.
    Goldberg, Gregory W.
    Duportet, Xavier
    Fischetti, Vincent A.
    Marraffini, Luciano A.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (11) : 1146 - 1150
  • [7] Development of a Genetic System for Marinobacter atlanticus CP1 (sp. nov.), a Wax Ester Producing Strain Isolated From an Autotrophic Biocathode
    Bird, Lina J.
    Wang, Zheng
    Malanoski, Anthony P.
    Onderko, Elizabeth L.
    Johnson, Brandy J.
    Moore, Martin H.
    Phillips, Daniel A.
    Chu, Brandon J.
    Doyle, J. Fitzpatrick
    Eddie, Brian J.
    Glaven, Sarah M.
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [8] Small CRISPR RNAs guide antiviral defense in prokaryotes
    Brouns, Stan J. J.
    Jore, Matthijs M.
    Lundgren, Magnus
    Westra, Edze R.
    Slijkhuis, Rik J. H.
    Snijders, Ambrosius P. L.
    Dickman, Mark J.
    Makarova, Kira S.
    Koonin, Eugene V.
    van der Oost, John
    [J]. SCIENCE, 2008, 321 (5891) : 960 - 964
  • [9] Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing
    Buckner, Michelle M. C.
    Ciusa, Maria Laura
    Piddock, Laura J. V.
    [J]. FEMS MICROBIOLOGY REVIEWS, 2018, 42 (06) : 781 - 804
  • [10] Metabolic modulation of tumours with engineered bacteria for immunotherapy
    Canale, Fernando P.
    Basso, Camilla
    Antonini, Gaia
    Perotti, Michela
    Li, Ning
    Sokolovska, Anna
    Neumann, Julia
    James, Michael J.
    Geiger, Stefania
    Jin, Wenjie
    Theurillat, Jean-Philippe
    West, Kip A.
    Leventhal, Daniel S.
    Lora, Jose M.
    Sallusto, Federica
    Geiger, Roger
    [J]. NATURE, 2021, 598 (7882) : 662 - +