We show trilinear Strichartz estimates in one and two dimensions on frequency-dependent time intervals. These improve on the corresponding linear estimates of periodic solutions to the Schr & ouml;dinger equation. The proof combines decoupling iterations with bilinear short-time Strichartz estimates. Secondly, we use decoupling to show new linear Strichartz estimates on frequency dependent time intervals. We apply these in case of the Airy propagator to obtain the sharp Sobolev regularity for the existence of solutions to the modified Korteweg-de Vries equation.
机构:
Beijing Inst Technol, Dept Math & Stat, Beijing, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R ChinaBeijing Inst Technol, Dept Math & Stat, Beijing, Peoples R China
Deng, Yangkendi
Fan, Chenjie
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing, Peoples R ChinaBeijing Inst Technol, Dept Math & Stat, Beijing, Peoples R China
Fan, Chenjie
Yang, Kailong
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Chongqing Natl Ctr Appl Math, Chongqing 401131, Peoples R ChinaBeijing Inst Technol, Dept Math & Stat, Beijing, Peoples R China
Yang, Kailong
Zhao, Zehua
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Dept Math & Stat, Beijing, Peoples R China
Minist Educ, Key Lab Algebra Lie Theory & Anal, Beijing, Peoples R ChinaBeijing Inst Technol, Dept Math & Stat, Beijing, Peoples R China
Zhao, Zehua
Zheng, Jiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
Natl Key Lab Computat Phys, Beijing 100088, Peoples R ChinaBeijing Inst Technol, Dept Math & Stat, Beijing, Peoples R China