Fault Diagnosis of Wind Turbine Rolling Bearings Based on DCS-EEMD-SSA

被引:0
|
作者
Zhu, Jing [1 ]
Li, Ou [1 ]
Chen, Minghui [1 ]
Miao, Lifeng [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Vehicle & Transportat, Luoyang 471000, Peoples R China
关键词
Ensemble empirical mode decomposition; Singular spectrum analysis; Fault diagnosis; Variance contribution ratio; Correlation coefficients; Permutation entropy; EMPIRICAL MODE DECOMPOSITION; SPECTRUM;
D O I
10.1007/s11668-024-02016-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Addressing the challenges of non-stationarity, nonlinearity, and noise interference in vibration signals of wind turbine rolling bearings, this paper proposes a fault diagnosis method combining differentiated creative search (DCS), ensemble empirical mode decomposition (EEMD), and singular spectrum analysis (SSA)-termed as DCS-EEMD-SSA. Initially, the DCS algorithm adaptively selects parameters for EEMD to decompose the fault signals. The decomposed signals are then filtered and reconstructed based on criteria such as variance contribution ratio, correlation coefficients, and permutation entropy. Subsequently, DCS adaptively selects parameters for SSA to further decompose the reconstructed signals into multiple subsequences. By analyzing the w-correlation graphs, signals of the same cycle are merged. The merged signals undergo envelope spectrum analysis, based on the highest variance contribution ratio, to diagnose faults in the wind turbine rolling bearings. The effectiveness of the proposed method is demonstrated through analysis of a publicly available rolling bearing dataset from Case Western Reserve University, showing its capability in accurately diagnosing faults in wind turbine rolling bearings.
引用
收藏
页码:2495 / 2508
页数:14
相关论文
共 50 条
  • [41] Rolling bearing fault diagnosis based on EEMD sample entropy and PNN
    Liu, Xiuli
    Zhang, Xueying
    Luan, Zhongquan
    Xu, Xiaoli
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (23): : 8696 - 8700
  • [42] A fault transfer diagnosis method for wind turbine bearings based on improved residual neural networks
    Deng L.-F.
    Wang Q.
    Zheng Y.-Q.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2024, 37 (02): : 356 - 364
  • [43] A Survey on Fault Diagnosis of Rolling Bearings
    Peng, Bo
    Bi, Ying
    Xue, Bing
    Zhang, Mengjie
    Wan, Shuting
    ALGORITHMS, 2022, 15 (10)
  • [44] Fault Diagnosis for Rolling Element Bearings Based on Feature Space Reconstruction and Multiscale Permutation Entropy
    Zhang, Weibo
    Zhou, Jianzhong
    ENTROPY, 2019, 21 (05)
  • [45] Adaptive Swarm Decomposition Algorithm for Compound Fault Diagnosis of Rolling Bearings
    Xiao, Chaoang
    Yu, Jianbo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [46] Logistic-ELM: a novel fault diagnosis method for rolling bearings
    Tan, Zhenhua
    Ning, Jingyu
    Peng, Kai
    Xia, Zhenche
    Wu, Danke
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (11)
  • [47] Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis
    Wang, Zhenya
    Yao, Ligang
    Cai, Yongwu
    Zhang, Jun
    RENEWABLE ENERGY, 2020, 155 : 1312 - 1327
  • [48] Application of ITT transform in fault diagnosis of wind turbine rolling bearing
    Tang G.
    Pang B.
    1600, Electric Power Automation Equipment Press (37): : 83 - 89
  • [49] Ewtfergram and its application in fault diagnosis of rolling bearings
    Zhang, Yongxiang
    Huang, Baoyu
    Xin, Qing
    Chen, Hao
    MEASUREMENT, 2022, 190
  • [50] A fault diagnosis method for rolling element bearings based on ICEEMDAN and Bayesian network
    Liu, Zengkai
    Lv, Kanglei
    Zheng, Chao
    Cai, Baoping
    Lei, Gang
    Liu, Yonghong
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (05) : 2201 - 2212