Alkali-modified biomass ash enhances the adsorption capacities of Cu2+, Cd2+, and Pb2+ and their immobilization in soil

被引:1
|
作者
Cui, Hongbiao [1 ,2 ]
Yu, Wenli [1 ,2 ]
Li, Shuai [1 ,2 ]
Zhang, Shiwen [1 ,2 ]
Hu, Shaojun [1 ,2 ]
Zhou, Jun [3 ]
机构
[1] Anhui Univ Sci & Technol, Joint Natl Local Engn Res Ctr Safe & Precise Coal, Huainan 232001, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Earth & Environm, Huainan 232001, Peoples R China
[3] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2024年 / 12卷 / 05期
关键词
Biomass ash; Heavy metals; One-step alkali modification; Adsorption; Immobilization; Chemical fraction; TOXIC METALS; FLY-ASH; REMOVAL; MECHANISM; KINETICS; CADMIUM; LEAD; DISSOLUTION; ADSORBENT; BIOCHAR;
D O I
10.1016/j.jece.2024.113490
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biomass ash (BA) is rich in silica, aluminum, potassium, phosphorus, and other elements, and it can be used for environmental remediation. However, there is a limitation in using BA for the modification with high adsorption capacities of heavy metals (HMs) through a simple and low-cost method. In this study, modified biomass ash (MBA) was prepared through one-step single alkali (KOH) modification, and its influence on the adsorption and immobilization of HMs was investigated in water and soil. BET analysis indicated that the specific surface area of MBA was increased by 3.26 times compared to BA. Compared to BA, the Si-O-Si/Al diffraction peaks of MBA were intensified, and the intensity of sylvite and gypsum was decreased based on the FTIR and XRD analysis. The maximum adsorption capacities of Cu2+, Cd2+, and Pb2+ for MBA were 2.35, 1.64, and 0.30 times higher than those of BA, respectively. XPS, FTIR, and XRD analysis showed that MBA adsorbed the HMs through physical adsorption, surface complexation, ion exchange, and precipitation. The application of 0.1-0.6 % MBA increased soil pH by 0.07-0.56 units compared to BA. MBA significantly decreased the exchangeable HMs concentrations, and converted them into stable fractions. This study provided a novel amendment with high adsorption capacities and immobilization effects for HMs, which can be utilized for remediating the contaminated soils.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] REMOVAL OF Cd2+, Cu2+ AND Pb2+ WITH A BURKINA FASO CLAY
    Sorgho, Brahima
    Mahamane, Abdoulkadri Ayouba
    Guel, Boubie
    Zerbo, Lamine
    Gomina, Moussa
    Blanchart, Philippe
    SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2016, 17 (04) : 365 - 379
  • [32] Application of Stabilized Nano Zero Valent Iron Particles for Immobilization of Available Cd2+, Cu2+, Ni2+, and Pb2+ Ions in Soil
    Saulius Vasarevičius
    Vaidotas Danila
    Dainius Paliulis
    International Journal of Environmental Research, 2019, 13 : 465 - 474
  • [33] Adsorption and Thermal Stabilization of Pb2+ and Cu2+ by Zeolite
    Lu, Xingwen
    Wang, Fei
    Li, Xiao-yan
    Shih, Kaimin
    Zeng, Eddy Y.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (32) : 8767 - 8773
  • [34] Functionalized Graphene Oxide/Polyacrylonitrile Nanofibrous Composite: Pb2+ and Cd2+ Cations Adsorption
    Asemaneh, H. R.
    Rajabi, L.
    Dabirian, F.
    Rostami, N.
    Derakhshan, A. A.
    Davarnejad, R.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (06): : 1048 - 1053
  • [35] Adsorption of Metals Pb2+, Cu2+, Cd2+, and Ni2+ onto Hydrogen PeroxideTreated Polyethylene Microplastics
    Neto, Joaquim R. de Vasconcelos
    Franca, Antonia Mayza M.
    Melo, Diego Q.
    Nascimento, Ronaldo F.
    Vidal, Carla B.
    Oliveira, Andre H. B. de
    REVISTA VIRTUAL DE QUIMICA, 2024, 16 (03) : 391 - 399
  • [36] Multiplexed detection of aqueous Cd2+, Pb2+ and Cu2+ ions at mercury-on-graphene film modified electrode by DPASV
    Shi, Dongmin
    Wu, Wenzhan
    Li, Xiaoyuan
    SENSING AND BIO-SENSING RESEARCH, 2021, 34
  • [37] Modified Carbon Paste Electrodes Used to Evaluate the Retention Properties of Cd2+, Pb2+ and Cu2+ on Biosolids, Soils and Biocomposites
    Flores Alvarez, Jose Manuel
    Gonzalez Martinez, Ignacio
    Guillen Bonilla, Hector
    Gildo Ortz, Lorenzo
    Reyes Gomez, Juan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (03): : 2066 - 2084
  • [38] Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb2+, Cd2+, and Cu2+
    Qu, Ping
    Li, Yuncong
    Huang, Hongying
    Chen, Jianjun
    Yu, Zebin
    Huang, Jun
    Wang, Hailong
    Gao, Bin
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 396
  • [39] Welan Gum-Modified Cellulose Bead as an Effective Adsorbent of Heavy Metal Ions (Pb2+, Cu2+, and Cd2+) in Aqueous Solution
    Liu, Jing
    Xie, Tong-Hui
    Deng, Chun
    Du, Kai-Feng
    Zhang, Na
    Yu, Jian-Jun
    Zou, Yu-Lin
    Zhang, Yong-Kui
    SEPARATION SCIENCE AND TECHNOLOGY, 2014, 49 (07) : 1096 - 1103
  • [40] The Effect of CaO in the Immobilization of Cd2+ and Pb2+ in Fly Ash-Based Geopolymer
    Ren, Xupicheng
    Wang, Fan
    He, Xiang
    Hu, Xiaomin
    CLEAN TECHNOLOGIES, 2024, 6 (03): : 1057 - 1075