Multi-Agent Deep Reinforcement Learning Based Scheduling Approach for Mobile Charging in Internet of Electric Vehicles

被引:2
|
作者
Liu, Linfeng [1 ,2 ]
Huang, Zhuo [1 ,2 ]
Xu, Jia [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci & Technol, Nanjing 210023, Peoples R China
[2] Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Electricity; Processor scheduling; Charging stations; Optimal scheduling; Schedules; Electric vehicles; Deep reinforcement learning; Internet of Electric Vehicles; mobile charging station; multi-agent deep reinforcement learning; scheduling strategy; CHALLENGES;
D O I
10.1109/TMC.2024.3373410
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile charging stations (MCSs) have become an indispensable complement of fixed charging stations. In the regions where fixed charging stations are sparsely deployed or even absent, the main concern is that how to properly schedule MCSs to charge the electric vehicles with insufficient electricity (EVCs). In this paper, we focus on the scheduling of idle MCSs and pending EVCs. To increase the charging revenue of MCSs and enhance the proportion of successfully charged EVCs, we schedule idle MCSs to proactively track some EVCs with potential charging demand, and schedule pending EVCs to approach some busy MCSs for potential charging opportunities. To this end, a Scheduling Approach based on Multi-Agent Deep Reinforcement Learning (SA-MADRL) is proposed to train the scheduling models for agents (idle MCSs and pending EVCs). In SA-MADRL, the agents obtain the local observations to make the scheduling decisions. Both idle MCSs and pending EVCs can independently make the scheduling decisions, and thus SA-MADRL can realize the fully distributed scheduling and has a good scalability. Extensive simulations and comparisons demonstrate the performance superiority of SA-MADRL, i.e., the charging revenue of MCSs can be significantly increased, and the proportion of successfully charged EVCs can be effectively enhanced.
引用
收藏
页码:10130 / 10145
页数:16
相关论文
共 50 条
  • [31] Multi-Agent Deep Reinforcement Learning for Recharging-Considered Vehicle Scheduling Problem in Container Terminals
    Che, Ada
    Wang, Ziliang
    Zhou, Chenhao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 16855 - 16868
  • [32] A Cooperative Charging Control Strategy for Electric Vehicles Based on Multiagent Deep Reinforcement Learning
    Yan, Linfang
    Chen, Xia
    Chen, Yin
    Wen, Jinyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8765 - 8775
  • [33] Multi-Agent Deep Reinforcement Learning Method for EV Charging Station Game
    Qian, Tao
    Shao, Chengcheng
    Li, Xuliang
    Wang, Xiuli
    Chen, Zhiping
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (03) : 1682 - 1694
  • [34] Research progress of electric vehicle charging scheduling algorithms based on deep reinforcement learning
    Zhang Y.
    Rao X.
    Zhou S.
    Zhou Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (16): : 179 - 187
  • [35] A deep multi-agent reinforcement learning approach to solve dynamic job shop scheduling problem
    Liu, Renke
    Piplani, Rajesh
    Toro, Carlos
    COMPUTERS & OPERATIONS RESEARCH, 2023, 159
  • [36] An IOV Spectrum Sharing Approach based on Multi-Agent Deep Reinforcement Learning
    Qian, Haizhong
    Cai, Lili
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2024, 32 (04) : 571 - 592
  • [37] Heuristic-Based Multi-Agent Deep Reinforcement Learning Approach for Coordinating Connected and Automated Vehicles at Non-Signalized Intersection
    Guo, Zihan
    Wu, Yan
    Wang, Lifang
    Zhang, Junzhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 16235 - 16248
  • [38] Coordinated Ride-hailing Order Scheduling and Charging for Autonomous Electric Vehicles Based on Deep Reinforcement Learning
    Zhang, Jinxi
    Kong, Lingming
    Zhang, Hongcai
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 2038 - 2044
  • [39] A transfer learning method for electric vehicles charging strategy based on deep reinforcement learning
    Wang, Kang
    Wang, Haixin
    Yang, Zihao
    Feng, Jiawei
    Li, Yanzhen
    Yang, Junyou
    Chen, Zhe
    APPLIED ENERGY, 2023, 343
  • [40] Electric vehicle pre-charging path planning with multi-agent participation in the internet of vehicles
    Liu, Dong-Qi
    Xie, Jin-Huan
    Wang, Yao-Nan
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (08): : 1438 - 1450